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The propagation of collimated and focused laser beams in the turbulent 

atmosphere has been modeled numerically under conditions of small-scale 

fluctuations. In a wide range of propagation parameters, namely, for weak 

intensity fluctuations, strong focusing, and saturation of fluctuations, the field 

coherence, intensity variance, and correlation of the intensity fluctuations have 

been studied by the Monte Carlo method for the phase screen model. The results 

obtained have been compared with field experiments and with the data obtained in 

the phase approximation of the Huygens-Kirchhoff method. 
 

1. INTRODUCTION 
 
Problems of wave propagation in randomly 

inhomogeneous media are encountered in many fields of 
wave physics. Effect of the atmospheric turbulence on 
the parameters of laser radiation was thoroughly 
studied for weak fluctuations when the value of the 

parameter β2
0 = 1.23 C2

n k
7/6
0  L11/6 defining the variance 

of a plane wave intensity in the first-order 
approximation of the smooth perturbation method 

(SPM) does not exceed unity1 (here, C2
n is the 

structure constant of the refractive index, k0 is the 
wave number, and L is the length of a propagation 
path). However, for regimes of strong focusing and 
saturation of the intensity fluctuations the strict 
analytical methods are lacking. The phase 
approximation of the Huygens-Kirchhoff method 
(PAHKM) can be applied for focused beams only when 

Ω   >>  β84/25
0  at β2

0   >>  1 or Ω   >>  1 at β2
0 < 1, and for 

collimated beams provided that Ω ≥ 1, where Ω = k0 a
2
0

/L and a0 is the initial beam radius. The errors in 
calculations of the variance of the intensity fluctuation 
by this method do not exceed 10$15% (see Ref. 2). 

Difficulty in obtaining analytical solutions for the 
statistical parameters of light fields in randomly 
inhomogeneous media has inspired the development of 
numerical methods for solving problems of atmospheric 
optics. The Monte Carlo method (MCM) of statistical 
simulations turned out to be most fruitful. This method is 
based on a phase screen model (PSM) and allows one to 
reproduce the parameters of propagation practically 
without limitations and to calculate the statistical 
characteristics of the light field using the general 
approach. 

The phase screen model is widespread in numerical 
calculations on the propagation of electromagnetic 
waves in the atmosphere, ionosphere, and 
interplanetary space as well as in problems concerning 

the propagation of acoustic waves in oceans, elastic 
waves in solid bodies, and seismic waves in the Earth.3 

In recent times the MCM based on the PSM has 
been used to study fluctuations of the intensity and 
fluctuations of the intensity distribution function for a 
plane wave and a point source.4$7 

In the present paper, an analysis of field coherence 
and statistics of fluctuations has been performed for a 
beam. Focused and collimated beams have been 
considered for a wide range of variation of the 

turbulence parameter β2
0. 

 
2. PHASE SCREEN MODEL AND THE MONTE 

CARLO METHOD 
 
The PSM is based on a parabolic equation written 

for a randomly inhomogeneous medium 
 

2ik0 
∂E(r)
∂z  + Δ⊥ E(r) + 2k2

0 n1 E(r) = 0, (1) 

 

where E(r) is the complex amplitude of the light field, 

k0 is the wave number, Δ⊥ = 
∂2

∂x2 + 
∂2

∂y2 is the transverse 

Laplacian operator, n1 is the fluctuating part of the 
refractive index. 

For the phase screen model, a layer of 
inhomogeneous medium with thickness Δz is replaced by 
an infinitely thin phase screen placed in the middle of the 
layer. The propagation of radiation is considered as a 
successive beam passage through a chain of phase screens. 
So fluctuations of the refractive index induce 

perturbations of the light field phase 
∼
ϕs+1/2(ρ) localized 

in planes of phase screens zs+1/2. Due to diffraction, these 
perturbations transform into amplitude ones between the 
screens.  

The distance between the screens Δz is small 
compared with the diffraction length of smallest-scale 

light field inhomogeneity k0 ρ
2
k but greater than the 
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outer scale of the turbulence L0, that is, 
 

k0 ρ
2
k < Δz < L0 . (2) 

 

In this case, a model of screens delta-correlated along 
the propagation coordinate z is valid. The two-
dimensional spectrum of phase fluctuations on the 

screen Fϕ(κ⊥) is expressed through the three-
dimensional spectrum of the refractive index 
fluctuations in the turbulent atmosphere8 Φn(κ⊥, 0). 

The most conventional procedure for random field 
generation on the phase screen is the spectral method. 
According to this method, the random phase is 
determined with the use of filtration of a Gaussian 
pseudorandom complex field with the help of the two-

dimensional spectrum of fluctuations Fϕ(κ⊥). 
In the spectral method, a scale of fluctuations on 

the phase screen is limited by the size of a calculation 
grid. To reproduce large-scale atmospheric fluctuations 
more correctly, one should employ the nested grid 
method9 and the method of subharmonics.10,11  

The model of phase screens corresponds to the 
splitting algorithm implemented to parabolic equation 
(1), which gives the following set of equations12: 

 
∼

E(κ, z) = F[ei
∼
ϕ E(ρ, z)], (3) 

 
∼

E(κ, z + Δz) = exp 
⎝
⎛

⎠
⎞$ ik0 

κ2

2k2
0

 Δz  
∼

E(κ, z), (4) 

 

E(ρ, z + Δz) = F 

$1[
∼

E(κ, z + Δz)], (5) 
 
where F and F 

$1 denote direct and inverse Fourier 
transforms.  

Errors in numerical experiments with stochastic 
fields propagating in randomly inhomogeneous media 
are due to the following factors: 

1. Stratified representation of a media.3,8,13 
2. Discrete representation of the phase screen and 

light field on the grid.4,14,15 
3. Boundary effects due to finite size of the 

computation grid.15 
4. Convergence of the solution in the Monte Carlo 

variable (in the number of realizations).16 
 

3. RESULTS OF SIMULATION 
 
Application of the Monte Carlo method 

corresponds to statistical processing in the object plane 
of a set of instantaneous parameters of a light beam 
propagating along an atmospheric path near the 
ground. The use of the phase screen method for small-
scale fluctuations means that the laser beam axis is 
always at the origin of coordinates in the object plane. 
This eliminates the effect of beam wanderings. The 
modified von Karman spectrum was taken as a model of 
turbulence 

 

Φn(κ) = 0.033 C2
n (κ2 + κ2

L)$11/6 exp ($ κ2/κ2
m),  (6) 

where κL = 2π/L0, L0 is the outer scale of turbulence, 
κm = 5.92/l0, l0 is the inner scale of turbulence. 

Collimated and focused Gaussian beams with 
wavelength λ = 0.5 μm have been considered. In 
experiments with collimated beams, the Fresnel number 
Ω was varied from 2.5 to infinity and with focused 
beams $ from 5 to infinity, with focal length taken so 
that Ωf = 10$25. For the collimated beam, such values 
of the Fresnel number correspond to a  
2-km path and to a 1-km path for the focused beam 
given that the inner scale of turbulence l0 = 4 mm and 
the initial radius of the beam a0 = 2 cm. The outer 
scale of turbulence was equal to the size of the 

computational grid. The structure constant C2
n = 

= 10$15$10$14 “ì$2/3. The turbulence parameter β2
0 was 

varied in the range 0$17. Simulation was performed on 
a square grid with maximum size 512×512 for ratios 
l0/h  =  4$20 and a0/h = 20$100, where h is the grid 
step size. Twenty phase screens were placed on the 
propagation path and 200 realizations were included in 
a statistical ensemble. 

 

3.1 Field coherence 
 

To determine spatial coherence of a beam γ(R, ρ), 
we should take an average over an ensemble of 
realizations. On the beam axis, the function γ(ρ) takes 
the following form: 

 

γM(ρ) = 
 〈E($ ρ/2) E*(ρ/2)〉M

(〈I($ ρ/2)〉M 〈I(ρ/2)〉M)1/2 , (7) 

 

where <...>M denotes averaging. In Figs. 1a and b, the 
dependence of coherence functions of collimated and 
focused beams on the coordinate ρ is shown for 
different values of the Fresnel number Ω and of the 

parameter β2
0. For the focused beam, the focal length 

was 200 m (Ωf = 25). For the collimated beam, with 

the increase of β2
0 the function ⏐γM(ρ)⏐ first gets 

narrower and than broadens. Due to diffraction 
divergence and saturation of the beam intensity 

fluctuations, the degree of coherence at β2
0 = 10.1 

(Ω = 3.3) is higher than ⏐γM(ρ)⏐ at β2
0 = 4.8 (Ω = 5).   

In case of the focused beam, ⏐γM(ρ)⏐ changes 

more profoundly with the increase of β2
0. Before the 

focal plane, the function ⏐γM(ρ)⏐ gets narrower due to 
beam focusing and atmospheric turbulence. Behind this 
plane, the coherence function considerably broadens 
due to divergence of the beam as a whole. At Ω = Ωf 

(β2
0 = 1.2), the coherence function is narrowest and its 

characteristic scale is approximately equal to the 
diffraction radius of the beam (=d = 0.8 mm). 

In the experiments performed the function 
⏐γM(ρ)⏐ changed from 1 to 0.6$0.7. To assess the 
coherence length ρE of the field, let us make a 
parabolic approximation of the coherence function 

⏐γM(ρ)⏐  in the vicinity of the point ρ = 0 and 

determine ρE using the following condition: 
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⏐γM(ρE)⏐  = e$1. (8) 

 

For the collimated beam, variations of the 
coherence length are shown in Fig. 2a. The coherence 
length ρE decreases considerably as far as 
z < z* = 800 m and almost does not change beyond this 
point. For paths with the length z*, the radius of the 

first Fresnel zone is λz* ≈ =0. So at the distance z* 
the decorrelation of the beam due to the turbulence and 
diffraction by radiating aperture is completed. Further 
the coherence length ρE slightly increases because of 
the beam divergence. 

The coherence lengths for the beam ρc, plane wave 
ρp, and spherical wave ρs are also shown in Fig. 2a. 
The functions were computed with the use of the phase 
approximation of the Huygens-Kirchhoff method 
(PAHKM) for the Kolmogorov power spectrum of the 
refractive index fluctuations.17 The good agreement of 
the data is seen with the results of field experiments18 

and PAHKM for weak fluctuations (z < 400 m, β2
0 < 1.3, 

and Ω >12.5) and saturated fluctuations (z > 1600 m, 
 

β2
0 > 11.5, and Ω < 3.1). But in the region of strong 

focusing (z ≈ z*, β2
0 ≈ 3.3, Ω ≈ 6) there exist 

appreciable difference that can be considered as the 
error of the PAHKM where normal log-amplitude and 
phase distribution is assumed.2 To establish the 
reason for this difference, the numerical experiment 

was performed with the same beam but C2
n was three 

times lower. So the value Ω ≈ 6 corresponded to the 

region of weak fluctuations β2
0 ≈ 1.1 (see Fig. 2a).  

The gap of the function is seen at the same value 
Ω ≈ 6. So we can conclude that diffraction by the 
transmitting aperture induces the minimum coherence 
length. 

For the focused beam, variations of the coherence 
length are shown in Fig. 2b. Considerable difference 
between the data obtained by the statistical simulation 
method and PAHKM is seen in the region of the beam 
waist. For stronger focusing, PAHKM yields the 
coherence length jump in the geometric focus of the 
beam, which cannot be explained from the physical 
point of view. 

 

 
 

FIG. 1. Dependence of the coherence function on the coordinate ρ for different values of the Fresnel number Ω and 

of the parameter β2
0: collimated beam, C2

n = 3⋅10$15 cm$2/3 (a); focused beam with a focal length of 200 m 

(Ωf = 25), C2
n = 1.43⋅10$14 cm$2/3 (b). 

 

 
FIG. 2. Coherence length ρE as a function of the path length z. Here, ρc , ρp, and ρs are the coherence lengths of 
the beam, plane wave, and spherical wave, respectively, calculated for the Kolmogorov power spectrum of the 

intensity fluctuations with the use of the PAHKM. Collimated beam, C2
n = 3⋅10$15 and 1⋅10$15 cm$2/3 (the curve 

with points on it) (a); focused beam with a focal length of 200 m (Ωf = 25) and C2
n = 1.43⋅10$14 cm$2/3 (b). 
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FIG. 3. Variance of the intensity fluctuations β2

I as a function of β2
0 calculated at the beam axis and radius of the 

collimated beam, C2
n = 3⋅10$15 “ì$2/3

 (a). Dependence of βI on the structure function of the intensity fluctuations 

D1/2
s  (2a0) for Ωf = 25, C2

n = 1.43⋅10$14 cm$2/3 (b). The point is for the experimental result obtained in Ref. 19. 

 
3.2. Variance of the intensity fluctuations 

 
In numerical experiments, the normalized variance 

of the intensity fluctuations β2
I(ρ, z) was calculated 

according to the following formula: 
 

β2
I (ρ, z) = 

〈I2(ρ,z)〉M $ 〈I(ρ,z)〉 2
M

〈I(ρ,z)〉 2
M

 . (9) 

 
The variance of the intensity fluctuations was 
calculated at the beam axis ρ = 0 and diffraction radius 

of the beam ρ = ad. For the collimated beam, β2
I is 

shown as a function of β2
0 in Fig. 3a. Calculated values 

of β2
I at the beam axis for 3 < β2

0 < 6.5 differed from 
that obtained analytically using the PAHKM and hence 
should be revised. Experimental data for  
 

the collimated beam are lacking in the literature for 
this interval of variation of the parameters. The 

maximum of β2
I is between the maxima for point source5 

and plane wave.4 
For comparison with experimental data obtained in 

Ref. 19, the parameter βI for the focused beam is shown 

in Fig. 3b as a function of D1/2
s  (2a0) calculated for 

the spherical wave over the transmitting aperture 
diameter. Difference between βI and the data borrowed 
from Ref. 9 is within the limits of errors of field and 
numerical experiments. 

 
3.3 Correlation of the intensity fluctuations  
 
At the beam axis R = 0, the correlation coefficient 

of the intensity fluctuations bI(R, ρ) is determined by 
the following formula:  

 

 

  bI(ρ) = 
〈I($ ρ/2) I(ρ/2)〉M $ 〈I($ ρ/2)〉M 〈I(ρ/2)〉M

[〈I2($ ρ/2)〉M $ 〈I($ ρ/2)〉 2
M][〈I2(ρ/2)〉M $ 〈I(ρ/2)〉 2

M]
 . (10) 

 

 
FIG. 4. Correlation coefficient βI as a function of the 

dimensionless parameter α = ρ/ λz. Experimental data 
(points) borrowed from Ref. 20 are shown for indicated 

values of β2
0. 

In Fig. 4, the dependence is shown of the 
correlation coefficient βI on the dimensionless 

parameter α = ρ/ λz and experimental data for 

indicated β2
0 values borrowed from Ref. 20. It is seen 

that the correlation between the adjacent points 

(ρ < 0.5 λz) decreases as β2
0 increases, but for greater 

values of ρ the correlation increases. This dependence 
is in agreement with analytical results of Ref. 2 and 
with the experimental data reported in Ref. 20. 

 
4. CONCLUSION 

 
Thorough investigations have been performed of 

spatial statistics of collimated and focused beams in the 
turbulent atmosphere by the Monte Carlo method for 
the phase screen model. The field coherence, variance, 
and correlation of the intensity fluctuations  
have been considered as functions of the turbulence 
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intensity for weak (β2
0 < 1) and strong (β2

0 ≥ 1) 
fluctuations and in the region of saturation (β2

0   >>  1).  
In the region of saturation, the small-scale 

correlation (ρ < 0.5 λz) decreases whereas the large-scale 

correlation (ρ > λz) increases. This fact is in agreement 
with experimental results reported in Ref. 20. 

It has been found that the dependence of the 
coherence length ρE on the distance z is non-monotonic. 
In the regions of weak fluctuations and saturation of 
fluctuations, there is good agreement between the 
obtained results and the data of the PAHKM and field 
experiments.18 In the region of strong fluctuations and for 
the Fresnel number Ω ≈ 6, the considerable difference was 
obtained that can be attributed to the errors of the 
PAHKM and associated with the diffraction by the 
transmitting aperture. In the case of strong focusing, the 
difference with the PAHKM is still greater. 
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