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It is established that a scalar quasi-monochromatic wave vanishes in the observation plane as a
linear function of two variables, if the probability density of the logarithmic derivative of the wave
amplitude decreases at infinity as x73. The coefficient with the negative third index of the Laurent series
for this probability density determines the number of real-plane zeros. The general results obtained can be

reduced to well-known particular cases.

Introduction

In the process of propagation, as the distance
increases and fluctuations in the turbulent medium
become stronger, a wave acquires some special
properties. At interference in optics, these properties
manifest themselves as bifurcations of the interference
fringes at those parts of the observation plane, where
the intensity of the object wave decays.!'2 At
diffraction of light coming from such areas, for
example, on the subaperture of a Hartman diaphragm,
focal spots form doublets> and more complicated
structures. These phenomena can be explained within
the framework of the mathematical model of a wave,
when its complex representation is approximated
locally by a polynomial and, in the general case, by an
integer exponential-type function (IETF) of several
variables. The well-known factorization theorems relate
the IETF and polynomial properties to the distribution
of zero points of these functions over real and complex
planes.4> From this point of view, special properties
arise as the wave (its amplitude or intensity) vanishes
at isolated points of the observation plane. These zero
points are the centers of optical vortices,® whose
characteristic feature is that the wave phase is
uncertain at the center, while in some vicinity of the
center the phase varies monotonically around the center
and is minimum.” In this case, the phase is no longer a
continuous function of two variables in the observation
plane, and the wave front dislocations are formed.

Since the appearance of zero is a discrete event,
the properties associated with it arise, as the wave
process goes over some threshold, and zero is an
indicator of this event. Once the zero has appeared, we
have a more complex state from both the experimental
and theoretical points of view. In this case, the
probability density of wave amplitude fluctuations
changes qualitatively, some light propagation models
become inefficient, and description of the wave process
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in terms of amplitude and phase, as well as their
recording, leads to ambiguous results.89

Zeros and associated optical vortices and wave
front dislocations are very interesting physical objects.
Their study is important for understanding the nature
of wave processes and for various applications. The goal
of this paper is to reveal general conditions enabling
the appearance of zeros and determining their density.

1. Preliminary considerations

Zeros lie in the observation plane at isolated points
corresponding to intersection of zero lines of the real
and imaginary parts of the complex wave model. In the
simplest case, this function vanishes as linear terms of
the Taylor series, but, according to the Weierstrass
preparation theorem, there exist zeros with a more
complex structure. For example, the function can
vanish on a closed curve in the observation plane or on
a line originating from infinity and ending in the
infinity.> However, for them to arise, zero lines of the
real and imaginary parts of the wave model should
coincide completely in the observation plane, but this is
statistically improbable.

In the experiment with a light-scattering plate, the
interference pattern observed seemed as it was caused
by isolated zero of a second-order polynomial of two
variables.2 The numerical statistical experiment on light
propagation through a turbulent medium also gave the
real and imaginary parts of the wave and its phase that
could correspond to such zero.3 It should be noted that
higher-order polynomials of two variables vanish, as
points of self-intersection of zero lines of the real and
imaginary parts coincide. This event is also statistically
improbable, because any finite area holds an infinite
number of points.

In the observation plane cross sections, higher-
order polynomials of two variables degenerate into
different-order polynomials of one variable. They can
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be factorized in different cross sections passing through
the zero point by different number of binomials. In this
sense, zero of a higher-order polynomial is anisotropic.

At insufficient resolution in both numerical and
field experiments, a cluster of first-order zeros can look
as one higher-order zero, but obvious cases of complex
zeros are usually connected with special initial
conditions, 10 therefore higher-order zeros should be
considered as deterministic objects. In this connection,
from here on we use the linear approximation to
describe zero and to study it as a statistical object.

Consider a wave propagating through a turbulent
medium and experiencing fluctuations. Let us present
the mathematical model of the wave in the complex
form as an analytical signal

Ulx, y, z, t) +iV(x, y, z, 0), €))

determined in the direction of propagation z and in
time.!! This model includes quasi-monochromatic,
parabolic, and scalar approximation for the light wave.

Let us fix the variable z at some time ¢ and place
the origin of the Cartesian coordinate system xOy at
the center of a circle in the observation plane lying
across the wave propagation direction. In this plane,
the model (1) is considered as IETF, and this allows us
to represent locally the real and imaginary wave parts
by linear terms of the uniformly convergent Taylor
series:

Ux, y) =u+u,x + u;y;

Vi, ) =v+o.x+ vy'y. (2)

The constants in these equations are determined at the
center of the circle, primes and subscripts denote
derivatives with respect to x or y. The coordinates of
the point (xg, yg), where the wave vanishes as a first-
order polynomial, are roots of the system of equations

3)

{u +uxy + u;jyo =0,

v+ 0y + 0y = 0.

To realize the statistical approach, we should
assume, as usually,!2714 that wave fluctuations are
homogeneous and isotropic in the observation plane.
The first condition, in particular, suggests that the
probability of zero appearance p(r) in some circle with
a rather small radius » does not depend on the position
of this circle in the observation plane. Then the mean
density of zeros can be presented using the well-known
method as a limit of the ratio

[= lim ’)(’2) . (4)

r—0 7

If the assumption of isotropic wave fluctuations is
valid, the probability p(r) should be independent of the
direction, from which zero came to the circle, at least if
the circle is small enough. Therefore, in the system (3)
we can assume yo =0 and omit subscripts. Then, by
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presenting the real and imaginary parts of the wave
through the amplitude and phase as u + iv = A exp io,
from Eq. (3) we obtain

A+ (A" + iA9)xg = 0,
from which we have the following system of equations

A(p,JCO = 07
A+ A,XO =0.

()

One of the solutions to the first equation in the system
is A#0, o =0. It corresponds to the case that the
wave front of the optical vortex is a right helicoid.
Another one solution relates the coordinates of zero to
the logarithmic derivative of the amplitude y’ in the
following way12:
xy = —4 =—()!, x=InA. 6)
A
The assumption of isotropy leads to the parity of
the probability density function w(xy) of a random
coordinate of the zero point xy. Taking into account
this fact and the monotonic relation between the
variables in Eq. (6), let us present the probability of
zeros in a circle as

p(r) = jw(xo)dxo 2 jwu / X')dix, (/) dyr =
-7 1

7

=2 J.wx/(x’)dx’, (7
A

where w,, is the probability density of the variable y'.

Substituting Eq. (7) into Eq. (4), we obtain the
following equation for the density of zeros!2:

= |i L ' ’
A= lim -2 1ij,<x>dx . (8)
r

This equation leads, in particular, to a special role of
the probability density of the logarithmic amplitude
derivative, since it is just its behavior at infinity that
determines the density of zeros [I. Let us pass to the
study of details of this behavior.

2. Main result

The value of [ is finite, if the integral in Eq. (8)
decreases at » — 0 no slower than r2. To provide for
such a behavior, we should assume the continuity of the
function w,, and its decrease at x' — . To study the
decrease rate, let us present w, in the vicinity of an
infinitely remote point as a part of the Laurent series,
which is regular there:
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w0 = X Ly ©
n=2

Since the probability density w,, should be an
integrable function in the domain of definition, the
initial value of the subscript n cannot be less than two.
Then, in view of the uniform convergence of the series,
it can be integrated by terms. Using this fact,
substitute Eq. (9) into Eq. (8) and calculate the

integral:

0

J.(X')’"dxl = (-1 - (Xr)1*”| )=
% 0

=(m-1)"1tyn-1, (10)

Now consider the limit (8) in a new form:
© n—3

- 4. r
D=2 lim Zf,nj. “an

r—0 ;=2 n
For the density of zeros D to have some finite value, the
subscript n should be more than two. However, D > 0
when the initial value of it is three. That is, zeros are
possible only if the function w,, is asymptotically

. 3 e
equivalent to /_3 ¢’ * at infinity

lim 3 w,(y) = (3. 12)

%' —0
Thus, regardless of the particular form of the
probability density function of the logarithmic amplitude
derivative, the density of zeros is determined by one
coefficient of the Laurent series according to the equation

D=n' /. (13)

3. Comparison with known results

Let us use the general equation (13) and derive
the known particular results for the density of zeros of
a light wave propagating through a turbulent medium
at different fluctuation intensity.

Note that the probability density w,(y")
represented by a uniformly convergent power series at
an infinitely remote point is regular there, therefore the
change of variables y’ = tin Eq. (9) is possible. Then
the coefficient of the Laurent series ¢_3 can be
calculated as the third coefficient of the Taylor series
by the equation

PR LA (14)

R A e
— Consider the case of very strong turbulence.
Light wave fluctuations under these conditions become
normal, and wave amplitudes become the Rayleigh
ones.!> The function w, and the density of zeros for

these conditions were calculated in Ref. 12:
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-3
2, o2, 7 c2,
w. :G_A(X’Z-'__AJ ; D:_A’ (‘15)

where cf,r is the variance of the amplitude derivative;
(Iy is the mean intensity. It can be easily seen that the
probability density from Eq. (15) satisfies the
asymptotic condition (12), and so zeros are possible.
Find, following Eq. (14), that the general equation
(13) transforms into the well-known equation for the

density of zeros of a normal random process from
Eq. (15)

-3/2
2 2
oy d3 [2 GA,J _

ST T
t=0
2 2
_Sa _Sa 16)
Ty T Ty

— Another one technique for determination of the
density of zeros is also efficient for the considered case
of very strong turbulence.!3:14 It uses the relation of
the number of zeros to the probability that the zero
lines intersect the real and imaginary parts of the wave
in the observation plane. In this connection, we need
multidimensional joint probability densities of wave
components and their gradients. The result was
obtained for a normal random process. It was found
that the density of zeros is determined by the width of
the spatial spectrum of the wave 6 in the form

D = kX0% /2x, 17)

where k is the wave number.

Reduce Eq. (17) to the equation for the density of
zeros of a normal process from Eq. (15). In the
observation plane cross sections, the wave, with the
allowance for the narrow band of its angular spectrum,
can be represented by an analytical signal, which is a
normal random process with the variance o°. The
probability density of the intensity of this process and
the mean intensity can be determined by the equations:

_ 1 I 2 _
w,; —2—exp [— F], o4 =(I). (18)

2

The probability density of the amplitude derivative of a
normal process also has the Gaussian form:

w4= 1 exp —A—,Z
A oba/27 25252 )

031,: c2bh? = b2(l>, (19)
where 61241/ is the variance of the amplitude derivative; b
is the halfwidth of the spatial spectral density.!> Take
into account that b is measured in the unit of reciprocal
length and 2% = k? (62). As a result, we obtain from
Eq. (17)
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2 2 2,
p=kllg2y - _a (20)
2n n w{l)

Thus, in the case of a normal random process, the
general equation (13) for the density of zeros reduces to
the well-known equation (15), which transforms into
the earlier result (17).

— Consider the case of weak turbulence. As a
consequence of Rytov approximation for the parabolic
equation, fluctuations of the amplitude logarithm have
the normal distribution.? Then the probability density
of the logarithmic amplitude derivative is also normal:

_y'2
w, = 1 exp[ X J Q1

2
2ncxr 2cx,

This probability density decreases at infinity faster
than x’_g. Therefore, according to the condition (12),
zeros should not arise. Proceeding as before [see
Eq. (14)], we obtain the result known from Ref. 12:

=0=>Db=0. (22
t=0

Y _;ﬁex -1
B3 Iney, A8 | 262, &2

— Analyze the most complicated intermediate case,
when the light wave propagates through strong
turbulence. Note first that the probability density
w, (x') expressed through the
wy(A, A’) — the joint probability density of the
amplitude A and its derivative A" — by the known
method 12:

can be function

w, (1) = Iwz(A,A ) AdA. (23)
0

After substitution of Eq. (23) into Eq. (14), we
can change the order of integration over A and
differentiation with respect to ¢ taking into account the
independence of these variables and the absence of
singularities, namely:

1] a3 7 .,
-3 =§ d?J‘wz(A,At )AdA =
0 =0
*“ a3
:% J’(%%(A,At*)AdA , (24)
0 t=0

where ¢! = x' as before. Then, from Eq. (24), we
obtain the same result as in Ref. 12, namely

Lo %k p__ %%
(o= DU n(a — 1)

Calculations are given in Appendix.

l_ (25)

Conclusion

With the most general assumptions on the
character of fluctuations and on the mathematical
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model of the wave process, we have found the earlier
unknown conditions, under which the wave amplitude
becomes zero. Only a certain behavior of the
probability density of the logarithmic amplitude
derivative asymptotically equivalent to x~3 at infinity
offers the possibility for zeros to appear. It turned out
that the probability of zeros is determined by one
parameter regardless of the functional form of the
probability density. This parameter is the coefficient
with the negative third subscript of the Laurent series
for the probability density of the logarithmic amplitude
derivative. Calculations of this coefficient for special
functions demonstrate that the obtained general result
provides for the known particular cases.

Appendix

Calculation of the density of zeros for
the case of strong turbulence
In the case of a strong turbulence, the joint
probability density of the wave amplitude and its

derivative can be presented by the product of the K-
distribution and the normal distribution!2:

(a+1) /2
4A° a
wy(AA) = ————— | —
2 6 4427 D) (<1>) -

o A2
/_ — Al
X K()H[Z % Aj exp ( 5 G%’j , (A1)

where T(a) is the gamma function; K, is the

MacDonald function. The parameter o can be expressed
through the scintillation index B as

a=2/(-1),p*> 1.

Substitution of A¢ ! in place of A’ allows the
coefficient ¢_3 to be calculated. Following Eq. (14), let
us find the third derivative of the exponential factor in
Eq. (A1) with respect to ¢:

3 [ A2 ]

3 )

dt ZGA,t

_[A% 94t 1242 exp| -4
Gg,tg 6144,737 Gi,ts 26?4,732

J. (A2)

Having substituted this result into Eq. (23), we
obtain the sum of three integrals over A. They have the
same form and are tabulated in Ref. 16:

(OL+1)/2
(g=—= | & x
362,42n T(a) \(I)
% I (?c+8 _ 9l atb | 121 oa+4
G%,tg ci,ts

ot ; (A3)
GA,t

t=0
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ls = IA&—1 exp(—gA2)K, (cA)dA :Ziqu,a)/z )
C
0

T (“—”)r (uj exp (ij Wia, (ﬁ) ,(AD)
2 2 8q 3 8q
where g = 6;12 2 c= 2Jo/{Iy; v =0 — 1.
At |t|—> 0, the variable z (cz/Sq) — 0, then
the Whuttaker function W, , has the following
asymptotic representation!7:

1
WKYP_(Z) =2 exp(-z/2U1/2+ pn —x,1+2u,2) =
rw
ra/2+p-x) '
where U is the second solution of the Kummer
equation; x = (1-a&)/2; p=(1 — a) /2. For small |¢|
Eq. (A3) simplifies significantly and takes the form

1
—2 " exp(-z/2) (AS)

5= w I'(a—1) x
rE@T W

As before, & takes the values: o + 8, a + 6, o + 4.

Now it is easy to obtain the final equation (25) by
substituting the integral (A6) into Eq. (A3) and
assuming t = 0.
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