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Solution of the inverse problem of reconstructing reflectance of the underlying 
surface from measured radiance data in the visible spectrum range is proposed. The 
statement of a problem is based on a model of radiative transfer above the surface 
with non–Lambertian inhomogeneous reflection. The measurements can be carried out 
both by ground and remote methods. This problem is solved by inverting optical 
transfer operator. Solution of the problem for the case of non–Lambertian 
homogeneous reflection is considered as a particular case. 

 
INTRODUCTION 

 
The reflectance of Earth's landscapes is normally 

characterized by the reflection coefficient, i.e., the optical 
characteristic that depends only on physical properties of the 
surface itself. Since natural and artificial objects on the 
Earth's surface have quite various reflectivities their reflection 
coefficients, generally speaking, depend on the horizontal 
coordinates on the surface as well as on the angular 
coordinates of an observer and an external source of 
illumination. Under conditions of natural illumination the 
reflection coefficient cannot be directly determined because the 
total reflected radiation flux is formed by photons scattered in 
the atmosphere and reflected from the surface. Measured 
values normally are brightness of upward radiation and the 
brightness coefficient of the atmosphere–underlying surface 
system, which are determined by the reflecting properties of 
the surface and optical conditions of the atmosphere as well. 
The study of the relationships between the reflecting and 
radiation characteristics of the surface is necessary to develop 
algorithms for atmospheric correction of data obtained from 
ground–based remote from measurements. 

A model of radiative transfer in the atmosphere above 
the surface with non–Lambertian inhomogeneous reflection 
is the basis for statement and solution of the inverse 
problem on reconstruction of the reflection coefficient from 
measurement data. Mathematical aspects of a radiation 
transfer model were considered in a number of papers.1–6 
Different statements of the inverse problem were considered 
in Refs. 3, 5–7, and 9. In the general case, it can be stated 
that solution of the inverse problem is reduced to inversion 
of the atmospheric optical transfer operator transforming 
the reflection coefficient into the brightness field of upward 
radiation. The method of determination of the surface 
reflection coefficient from the measured brightness of 
upward radiation or from a known coefficient of brightness 
of the atmosphere–underlying surface system is the subject 
of the present investigation. 

 
MATHEMATICAL MODEL OF RADIATIVE 

TRANSFER 
 
Spectral brightness of natural radiation in the visible 

range, I ≡ I(z, r, s, s
0
), in the atmosphere–underlying system 

obeys the boundary–value problem for integral differential 
equation of radiative transfer4 

 

LI = SI ; I⏐
Γ0

 = πS
λ
δ(s – s

0
) ;  I⏐

Γh
 = R

ρ
I . (1) 

Here L
 
= (∇, s) + α(z) is the transfer operator;  

S: SI = 
σ(z)
4π  × ⌡⌠

Ω

 f(z, s, s′) I(z, r, s', s
0
) ds′ is the scattering 

operator; R
ρ
: R

ρ 
I = 

1
π ⌡⌠

Ω
+

 ρ(r, s′, s
0
) I(h, r, s', s

0
) ds′ is the 

reflection operator; α(z) and σ(z) are the extinction and 
volume scattering coefficients; f(z, s, s′) is the scattering 
phase function; ρ(r, s, s

0
) ≡ ρ is the reflection coefficient, 

0 < ρ < 1; πS
k
 is the extraterrestrial solar constant, λ is the 

wavelength; Γ
0
 = {z = 0, s ∈ Ω

+
}; Γh = {z = h, s ∈ Ω

–
}, Ω 

is the unit sphere; Ω
+
 and Ω

–
 are the lower and upper 

hemispheres; z is a vertical coordinate; r = {x, y} is the 
vector of horizontal coordinates; z = 0, z = h are the upper 
and lower boundaries of the atmosphere; s = {μ, s

´
} is the 

unit vector of light propagation, s
´
 = 1 – μ2

 {cosϕ, sinϕ}; 

μ = cosθ; s
0
 = {ζ, 1 – ζ 

2, 0} is the direction of incidence 

of the solar radiation flux; ζ = cos τ
0
; θ and ϕ are the zenith 

and azimuthal angles; and, θ
0
 is the zenith angle of the sun. 

Let the reflection coefficient be 
 

ρ(r, s, s
0
) = q(r, s

0
) P(r, s, s

0
) , (2) 

 

where q(r, s
0
) = 

1
π ⌡⌠

Ω
–

 ρ(r, s, s
0
) μ ds is the surface albedo, 

P(r, s, s
0
) is the reflection phase function satisfying the 

condition 
1
π ⌡⌠

Ω
–

 P(r, s, s
0
) μ ds = 1. Any surface can be 

considered as superposition of N types of the basic physical 
surfaces with the known reflection phase functions Pn(s, s0) 

whose presence at each point of the surface is controlled by 
the albedo functions. Therefore, without loss of generality 
one can assume 
 

ρ(r, s, s
0
) = ∑

n=1

N

 
 qn(r) Pn(s, s0

) . (3) 
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The coefficient of reflection by a homogeneous surface 
can, by analogy, be represented as 
 

r–(s, s
0
) = ∑

n=1

N

 
 
q–n Pn(s, s0

) . (4) 

 

Here the values q–n are the weights of the corresponding 

modes. The determination of the summing limit N is an 
independent problem. At n = 1, from Eq. (3) we have the 
most rough representation 
 

ρ(r, s, s
0
) = q(r) P(s, s

0
) (5) 

 

and for a homogeneous surface  
 

r–(s, s
0
) = q– P(s, s

0
)
 
, (6) 

 

where q– is the average surface albedo. Representation (5) 
contains the internal contradiction. On the one hand, the 
surface is characterized only by the average reflection phase 
function P(s, s

0
). On the other hand, according to Eq. (5), 

the surface is virtually inhomogeneous because the albedo 
q(r) depends on r. Therefore, if one has only the average 
reflection phase function P(s, s

0
) (n = 1) Eq. (6) is actually 

more grounded and practical. 
The measured coefficient of the spectral brightness of 

the surface is defined as follows: 
 

ρ
m
(r, s, s

0
) = πI(h, r, s, s

0
)/E(r, s

0
) , s ∈ Ω

–
 , (7) 

 

where E(r, s
0
) = ⌡⌠

Ω+

 I(h, r, s, s
0
)) μ ds is the surface 

irradiance. 
For the directions s ∈ Ω

+
 the equality 

 

I = I′ + I
d
 (8) 

 

is valid, where I′
 
≡ I′(z, r, s, s

0
) and I

d
 = πS

λ
δ(s – s

0
)e–τ/ξ 

are the brightnesses of the scattered and direct components 

of radiation in the atmosphere, τ = ⌡⌠
0

z

 α(z′)dz′ is the optical 

coordinate, and ζ = cosθ
0
. After substitution of Eq. (8) into 

Eq. (1) for the brightness of the scattered component which 
involves the directly reflected radiation for s ∈ Ω, we obtain 
 

LI′ = SI′ + SI
d
 ;  I′⏐

Γ0
 = 0 ;  I′⏐

Γh
 = R

ρ
(I′ + I

d
) . (9) 

 

By substituting the bottom boundary value condition 
from Eq. (9) into Eq. (7) and taking into account that the 
equality I = I′ is valid for s ∈ Ω

–
 we can find the 

relationship ρ
m
(r, s, s

0
) ≡ ρ

m
 with ρ(r, s, s

0
) 

 

ρ
m
(r, s, s

0
) = π R

ρ
(I′ + I

d
)/E , (10) 

 

or in the extended form 
 

ρ
m
(r, s, s

0
) = 

π
E 
⎣
⎡ρ(r,

 
s,

 
s
0
) T′ + 

 

+ 
1
π ⌡⌠

Ω
+

 

 
ρ(r, s, s′)

⎦
⎤ 

 
I(h, r, s′, s

0
) μ′ ds′  , (11) 

where T′ = ζ S
λ
T(ζ), T

0
(ζ) = e

–τ
0
/ξ

, and τ
0
 = ⌡⌠

0

h

 α(z′)dz′. 

The earth's surface irradiance by virtue of Eq. (8) is 

E(r, s
0
) = πT′ + ⌡⌠

Ω+

 I′(h, r, s′, s
0
)) μ′ds′ . 

In order to find the relationship of ρ(r, s, s
0
) and the 

brightness of upward radiation at any height h – z above the 
surface we have to solve the boundary value problem (Eqs. (1) 
or (9)). The solution of the boundary problem (Eq. (1)) is 
reduced to the solution of the simplest boundary value 
problems5,10–12 using methods of multiple rereflections and 
space–frequency characteristics. Thus, using the method of 
multiple rereflections the boundary value problem (Eq. (1)) 
for s ∈ Ω

–
 can be represented in the form2,6 

 

I = D + Z(r – r∼, s, s
0
) T(μ) + 

 

+ ⌡⌠
Ω

–

 
 ⌡⌠
–∞

∞

 
 
O
~
δ
(z, r – r∼ – r′, s, s′) Z(r, s′, s

0
) dr′ ds′ , (12) 

 

where D is the brightness of the atmospheric haze, 
Z(r, s, s

0
) = I(h, r, s, s

0
) is the surface brightness, 

 

Z(r, s, s
0
) = ∑

n=0

∞

 
 (Qh R

ρ
)nR

ρ
(D + I

d
) = (E

∧
 – RΘh)

–1R
ρ
(D + I

d
),     

 (13) 

E
∧
 is the unit operator, Θh is the integral operator acting 

according to the rule Θh: 
 

Θh 
Z =⌡⌠

Ω
–

 
 ⌡⌠
–∞

∞

 
 
Oh(r – r′, s, s′) Z(r′, s′, s

0
) dr′ ds′ , 

 

T(μ) = e
–(τ0–τ)/η

 ;  η = ⏐μ⏐ ;  Oh(r, s, s′) = O
δ
(h, r, s, s′) , 

 

O
δ
(z, r, s, s′) is the pulse–transient function of a system, 

where the radiation is transferred and has a unidirectional 
point source of light at its low boundary 
 

O
δ
(z, r, s, s′)=T(μ′) δ(r – r

∼
) δ(s – s′)) + O

∼
δ
(z, r – r∼ – r′, s, s′).    

 (14) 
 

O
~
δ
(z, r, s, s′) is the diffusion component of the pulse 

transient function; r~ = s
⊥
(h – z)/η is the displacement 

vector. Functions D and O
∼
δ
 obey the equations 

 

LD = SD + SI
d
 ; LO

~
δ
 = SO

~
δ
 + 

σ(z)
4π  T(μ′) δ(r – r∼) f(z, s, s′) 

with the zero boundary conditions.  
The main idea of representation (12) is supplemented 

by the following analytic representations: 
 

R
ρ
(D + I

d
) ≡ E

ρ
( r, s, s

0
) = 

 

= 2 ⌡⌠
0

1

 
 ρ

0
(r, μ, μ′) D0(h, μ′, z) μ′ dμ′ + ζρ(r, s, s

0
) S

λ
e
–τ0/ξ;  (15) 
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Z(r, s, s
0
) ≡ E

ρ
(r, s, s

0
) + 

 

_ _

1 1 1 1 2 1 2

1

0 1 1

( ) ( )

( r r s s ) r s s ) d  ds d  ds ,

n

n

n n-1 n-1 n n-1 n n n n n

Q r, r - r , s, s  Q r , r  - r , s , s  

Q r ,  - , ,  E ( , , r r

Ω Ω

∞ ∞∞

= −∞ −∞

ρ

+ … …

…  … 

∑ ∫ ∫ ∫ ∫
�������  

 

where 
 

Q(r, r – r
1
, s, s

1
) = 

1
π⌡⌠
Ω

+

 
 ρ(r, sn, s0

) O
h
(r – r

1
, s′, s

1
) μ′ ds′ , 

 

ρ0(r, μ, ζ) = 
1
2π ⌡⌠

0

2π

 
 ρ(r, s, s

0
) dϕ ,  

 

D0(h, μ, ζ) = 
1
2π ⌡⌠

0

2π

 
 D(h, s, s

0
) dϕ . 

 

In the case of a homogeneous Lambertian surface 
representation (12) is reduced to the form 
 

I
–

 = D + Z
–

(s, s
0
) T(μ) + ⌡⌠

Ω
–

 
 A

δ,0
(z, s, s′) Z

–
(s′, s

0
) ds′ , (16) 

 

where I
–

 = I⏐
ρ=ρ

–
0

 is the radiance, 

 

–
Z(s, s

0
) = E–

ρ
(s, s

0
) + 

 

_ _

1 1 2 0 1

1

( ) ( ) (s s ) s s )ds ds ,n-1 n n n

n

n

Q s, s  Q s , s Q ,  E ( , −

Ω Ω

∞ − − −

ρ
=

+ … …  … ∑ ∫ ∫
�����

 (17) 
 

E–
ρ
(sn, s0

) = 2 ⌡⌠
0

1

 
 –ρ(μ, μ′) D0(h, μ′, ζ) μ′dμ′ + ζ S

λ

–
ρ(s, s

0
)e

–τ0/ξ, 

 

–
Q(s, s

1
) = 

1
π⌡⌠
Ω

+

 
 –ρ(s, s′) Ψ

δ,0
(h, s′, s

1
)μ′ds′ , (18) 

 

A
δ,0

(z, s, s′) = Ψ
δ,0

(z, s, s′) – δ(s – s′) T(μ′) , 
 

–ρ  
0(μ, μ′) = 

1
2π ⌡⌠

0

2π

 
 –ρ (s, s′) dϕ , 

 

Ψ
δ,0

(z, s, s′) = ⌡⌠
–∞

 ∞

 
 O

δ
(z, r′, s, s′) dr′ . 

 

In a limiting case of an isotropic reflection 
representations (12) and (16) and accompanying formulas give 
the well–known results.10,11 

Formulas (12) and (16) are compact, however, when 
applied to calculations they imply computations of 
multidimensional sums and integrals. To simplify the 
computations some approximate models of reflection are used. 
The approximate models take into account the anisotropy of 
the reflection coefficient only for unscattered radiation,13 or  

use the single–reflection approach.1,5,6 These assumptions 
enable one to simplify the operator of direct problem solution. 

Let us make use of a non–Lambertian single reflection 
approach, according to which the radiation singly reflected 
from the surface is taken into account by the reflection 
coefficient ρ(r, s, s

0
) and the multiply rereflected from the 

surface radiation is accounted for by the albedo q(r, s
0
). As is 

shown in Ref. 1, this approach provides the calculation error 
of brightness I less than 1%. For solving boundary value 
problem (1) we use the method of space–frequency 
characteristics. To use this method it is necessary to factor the 
dependences on horizontal and angular variables. Such a 
factorization is done by expansion (3). The use of this method 
within the framework of the non–Lambertian single–
reflection approach we have 
 

I = D + ∑
n=1

N

 
 q–n 

⎣
⎢
⎡

⎦
⎥
⎤

Ψ
–

δ,0,
 n (z, s, s

0
) + 

q–Ψ
0
(z, μ)

1 – q–c
0

 C
–

δ,0,
 n(ζ)  + 

 

+ 
1

(2π)2 

⌡
⎮
⎮
⌠

–∞

∞

 

 

∑
n=1

N

 
 q∼
∧

n(p) 

⎩
⎨
⎧

Ψ
–

δ,
 n (z, p, s, s

0
)

 

+

 

Ψ(z, p, s)

1 – q
–

C(p)
 × 

 

× 
⎭⎪
⎬
⎪⎫

⎣
⎢
⎡

⎦
⎥
⎤

q
–

 C
–

δ,n(p, s
0
) + 

∑
n′=1

N

 
 q
–

n′ C
–

δ,0,
 n'

(ζ)

1 – q
–

c
0

 e–i(p,r) dp, (19) 

where  
 

Ψ
–

δ,0,
 n (z, s, s0

) = ⌡⌠
Ω

–

 
 
Ψ

δ,0
(z, s, s′) EPn

(s′, s
0
) ds′ , 

 

Ψ
0
(z, μ) = 2π ⌡⌠

0

1

 
 
Ψ0

δ,0
(z, μ, μ′) dμ′) , c

0
 = 2 ⌡⌠

0

1

 
 
Ψ

0
(h, μ) μ dμ , 

 

C
–

δ,0,n(ζ) = 2 ⌡⌠
0

1

 
 
Ψ
–0

δ,0,
 n(h, μ′, ζ)μ′dμ′ , 

 

EPn
(s, s

0
) = 2⌡⌠

0

1

 

 

P0
n(μ, μ′) D0(h, μ′, ζ)μ′dμ′ + ζPn(s, s

0
) S

ρ
e
–τ0/ξ, 

 

Ψ
–0

δ,0,
 n(z, μ, ζ)= 

1
2π ⌡⌠

0

2π

 
 Ψ
–

δ,0,
 n (z, s, s0

) dϕ ,  

 

P0
n(μ, ζ) = 

1
2π ⌡⌠

0

2π

 
 Pn(s, s0) dϕ , 

 

q–n = <qn(r)> , q~n(r) = qn(r) – q–n ,  
 

q∼
∧

n(p) = ⌡⌠
–∞

∞

 
 q
∼

n(r) ei(p,r) dr , 

 

q– = ∑
n=1

N

 
 q–n , Ψ

0
δ,0

(z, μ, μ′) = 
1
2π ⌡⌠

0

2π

 
 Ψ

δ,0
(z, s, s′) dϕ′ , 
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Ψ
–

δ, n(z, p, s, s
0
) = ⌡⌠

Ω
–

 
 Ψ

δ
(z, p, s, s′) EPn

(s′, s
0
) ds′ , 

 

C
–

δ,
 n( p, s

0
) = 

1
π ⌡⌠

Ω
+

 
 Ψ
–

δ,
 n(h, p, s′, s

0
) μ′ds′ , 

C(p) = 
1
π ⌡⌠

Ω
+

 
 Ψ(h, p, s) μ ds , 

 

Ψ(z, p, s) = ⌡⌠
Ω

+

 
 Ψ

δ
(z, p, s, s′) ds′ , 

 

Ψ
δ
(z, p, s, s′) = ⌡⌠

–∞

 ∞

 
 O

δ
(z, r, s, s′) ei(p, r) dr is the main 

space–frequency characteristics, p = {px, py} is the vector of 

a two–dimensional spatial frequency. 
In the case of a Lambertian surface it directly follows 

from Eq. (19) that 
 

–
I= D + ∑

n=1

N

 
 q–n 

⎣
⎢
⎡

⎦
⎥
⎤

Ψ
–

δ,0, n (z, s, s0
) + 

q–Ψ
0
(z, μ)

1 – q–c
0

 C
–

δ,0, n(ζ) . (20) 

 

It we omit the subscripts n and n' in Eqs. (19) and (20) 
and in the auxiliary relations as well as the summing over 
them we obtain the solution corresponding to 
representations (5) and (6). 

According to the above–presented mathematical 
models the numerical calculations of the radiation 
brightness are reduced to calculations of the basic radiation 
characteristics D, Ψ

0
, Ψ, Ψ

δ,0
, Ψ

δ
 (or O

δ
) entering into 

solutions of Eqs. (12), (16), (19), and (20). These functions 
are independent of ρ and determine the action of 
atmospheric optical transmission operator. Algorithms for 
calculation of these characteristics and the corresponding 
software have been developed in Refs. 5, 9, 11, 12, and 14.  

The whole set of the above relations forms a 
mathematical model of the radiative transfer which is used 
below for the statement of the inverse problem. 

 
RECONSTRUCTION OF THE REFLECTION 
COEFFICIENT FROM GROUND–BASED 

MEASUREMENT DATA 
 

To reconstruct the reflection coefficient ρ from 
measurements of the brightness coefficient ρ

m
 one should 

solve the integral equation 
 

ρ(r, s, s
0
) = – 

1
πT′⌡⌠

Ω
+

 
 r(r, s, s′) I(h, r, s′, s

0
) μ′ ds′ + 

 

+ 
E(r, s

0
)

πT′  ρ
m
(r, s, s

0
) (21) 

 

with respect to ρ(r, s, s
0
). Equation (21) follows from 

Eq. (11). Under Lambertian reflection ρ(r, s, s
0
) ≡ ρ(r, s) 

Eq. (21) degenerates to the identity q(r) ≡ ρ
m
(r, s, s

0
) and 

the statement of the problem on atmospheric correction of 
the ground measurements ρ

m
 becomes senseless. The same 

result takes place under ρ(r, s, s
0
) ≡ ρ(r, s). Therefore, the  

difference between ρ  and ρ
m
 is determined by the dependence 

ρ and ρ
m
 on s

0
 alone. Difference between ρ and ρ

m
 has an 

important consequence: the experimental ground support data 
of satellite measurements obtained from a non–Lambertian 
surface ρ

m
 are not identical to the results of reconstructing ρ 

from remote measurements. 
Integral equation (21) is nonlinear because the functions 

I(h, r, s, s
0
) and E(r, s

0
) implicitly depend on ρ(r, s, s

0
). The 

solution of this equation can be found by the iteration method. 
First of all one has to eliminate the unknown function 
I(h, r, s′, s

0
) from the equation which is determined by the 

solution of boundary value problem (9). The brightness can be 

represented by the sum I = D + ∑
n=1

∞

 I 
(n), where I 

(n) are the 

brightness components composed by photons n times 
rereflected from the surface. Numerical calculations show that 
for real values of the optical thickness of the atmosphere and 
surface albedo in downward radiation (s ≡ Ω

+
) it is sufficient 

to take only I(1) without a noticeable error. In view of this 
circumstance let us use the sum 

 

I = D
 
+
 
I 

(1) , (22) 

 

where the component I 
(1) is found from the solution of the 

boundary value problem8 

 

LI 
(1) = SI 

(1) ;  I 
(1)⏐

Γ0
 = 0 ;  I 

(1)⏐
Γh

 = R
ρ
(D + I

δ
) . (23) 

 

By substituting Eq. (21) into Eq. (20) we obtain 
 

ρ(r, s, s
0
) = – 

1
πT′⌡⌠

Ω
+

 
 r(r, s, s′) [D(h, s′, s

0
) + 

 

+ I 
(1)(h, r, s′, s

0
)] μ′ ds′ + 

E(1)(r, s
0
)

πT′  ρ
m
(r, s, s

0
) , (24) 

 

where 

E(1)(r, s
0
) = πT′ + ⌡⌠

Ω
+

 
 [D(h, s′, s

0
) + I 

(1)(h, r, s′, s
0
)] μ′ ds′ . 

 

Let us first write down the solution of the linearized 
equation neglecting the value I 

(1)(h, r, s', s
0
) 

 

ρ(0)(r, s, s
0
) = 

1
πT′ ⎣

⎢
⎡
E(0)(s

0
) ρm

(r, s, s
0
)
 
+
 
 

 

+ ⌡⌠
Ω

+

 
 E(0)(s′) ρ

m
(r, s, s′) ∑

k=1

∞

  Dk(h, s′, s
0
)

⎦
⎥
⎤ 

 
μ′ ds′ , (25) 

 

where 
 

E(0)(s
0
) = πT′ + ⌡⌠

Ω
+

 
 D(h, s′, s

0
) μ′ ds′ ; 

 

D
1
(s′, s

0
) = – 

1
πT′ D(h, s′, s

0
) ,  s′ ∈ Ω

+
 ; 

 

Dk(s′, s
0
) = ⌡⌠

Ω
+

 
 Dk–1

(s, s′′) D(h, s′′, s
0
)m′′ ds′′ , k > 1 . 
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Substituting now ρ(0)(r, s′, s
0
) into Eq. (23) we can 

approximately find the function I 
(1) and then E(1)(r, s

0
). As a 

result the solution of integral equation (24) takes the form 
 

ρ(r, s, s
0
) ≈ ρ(1)(r, s, s

0
) = 

1
πT′ ⎣

⎢
⎡
E(1)(r, s0

) ρ
m
(r, s, s0

)
 
+
 
 

 

+ ⌡⌠
Ω

+

 
 E(1)(r, s′) ρ

m
(r, s, s') ∑

k=1

∞

 
 Ik(h, r, s′, s

0
)

⎦
⎤

 

 

μ′ ds′  , (26) 

 

where 
 

I
1
(r, s′, s

0
) = – 

1
πT'

 [D(h, s′, s
0
) + I(1)(h, r, s′, s

0
)⏐

ρ=ρ(0)
] , 

 

Ik(r, s′, s
0
) = ⌡⌠

Ω
+

 
 Ik–1

(r, s′, s′′) I
1
(h, r, s′′, s

0
) μ′′ ds′′ , k > 1 . 

 

Ground–based measurements are carried out at a fixed 
point r. The influence of the adjacency effect15 caused by 
the surface albedo inhomogeneities is quite insignificant 
since the brightness of downward radiation weakly 
depends on the horizontal coordinates. Therefore, it is 
reasonable to have solutions for the reflection coefficients 
and brightness coefficients averaged over the horizontal 

coordinates ρ
–

(s, s
0
) and ρ

–
m
(s, s

0
). For a homogeneous 

non–Lambertian surface we have 
 

ρ–(s, s
0
) = 

1
πT′ ⎣

⎢
⎡–
E(1)(s

0
) ρ–

m
(s, s

0
)
 
+
 
 

 

+ ⌡⌠
Ω

+

  
–
E(1)(s′) ρ–(s, s′) ∑

k=1

∞

 
 
–
I k(h, s′, s

0
)

⎦
⎥
⎤ 

 
μ′ ds′  , (27) 

 

where  
 

ρ– 
(0)(s, s

0
) = 

1
πT′ ⎣

⎢
⎡
E(0)(s

0
) ρ–

m
(s, s

0
)
 
+
 
 

 

+ ⌡⌠
Ω

+

 
 E(0)(s′) ρ–

m
(s, s′) ∑

k=1

∞

 
 Dk(h, s′, s

0
)

⎦
⎥
⎤ 

 
μ′ ds′  , 

 

–
E(1)(s

0
) = πT′ + ⌡⌠

Ω
+

 
 [D(h, s′, s

0
) + 

–
I (1)(h, s′, s

0
)] μ′ ds′ , 

 

–
I

1
(s′, s

0
) = – 

1
πT′ [D(h, s′, s

0
) + 

–
I (1)(h, s′, s

0
)⏐–

ρ=
–
ρ (0)

] , 
 

–
I k(s′, s

0
) = ⌡⌠

Ω
+

 
 
–
I k–1

(s′, s′′) 
–
I

1
(h, s′′, s

0
) μ′′ ds′′ , k > 1  

 

and the function I 
(1) is determined from the solution of the 

boundary value problem 
 

{
–
L 

–
I (1) = S

–
I (1); 

–
I (1)⏐

Γ0
 = 0; 

–
I (1)⏐

Γh
 = 

–
R

ρ
(D + Id)} , 

 

–
L = μ 

d
dz + α(z) , 

–
R

ρ

–
I  = 

1
π⌡⌠
Ω

+

 
 –ρ(s, s′) 

–
I(h, s′, s

0
) μ′ ds′ . 

Formulas (25) are the basic calculational relations for 
algorithms of atmospheric correction of ground–based 
measurements provided that the atmospheric optical 
parameters are known. 

 
RECONSTRUCTION OF THE REFLECTION 

COEFFICIENT FROM REMOTE MEASUREMENTS 
 

Let the brightness I(z, r, s, s
0
) be known. The reflection 

coefficient ρ(r, s, s
0
) is required to be determined. The 

atmospheric optical parameters are assumed to be known. 
Let us make use of model (12)–(15). From Eq. (13) we 

have 
 

(E
∧
 – R

ρ
 Θh) Z(r, s, s

0
) = R

ρ
(D + I

d
) = 

 

= Z(r, s, s
0
) – R

ρ
 Θh Z(r, s, s

0
) . 

Since R
ρ
ΘhZ(r, s, s

0
)=

1
π⌡⌠
Ω

+

 
 ρ(r, s, s′) ⌡⌠

Ω
–

 
 

⌡⌠
–∞

 ∞

 
 O

δ
(h, r – r′, s′, s′′) × 

 

× dr′ds′′μ′ds′ based on Eq. (15), one obtains 
 

2⌡⌠
0

1

 
 ρ0(r, μ, μ′) D0(h, μ′, ζ) μ′dμ′ + ζρ(r, s, s′) S

λ
 e

–τ0/ζ
 = 

 

= – 
1
π⌡⌠
Ω

+

 
 ρ(r, s, s′) J(h, r, s′, s

0
) μ′ds′ + Z(r, s, s

0
) , (28) 

where 

J(h, r, s, s
0
) = ⌡⌠

Ω
–

 
 

⌡⌠
–∞

 ∞

 
 O

δ
(h, r – r′, s, s′) Z(r′, s′, s

0
)dr′ds' . 

 

Let us rewrite equality (12) as the equation with respect to 
the function Z(r, s, s

0
) 

 

Z(r – 
∼
r, s, s

0
) T(μ) + 

 

+ ⌡⌠
Ω

–

 
 

⌡⌠
–∞

 ∞

 
 ∼
O

δ
(z, r – 

~r – r′, s, s′) Z(r′, s′, s
0
)dr′ds′ = 

 

= I – D , s ∈ Ω
–
 . (29) 

 

The function ρ(r, s, s
0
) is found by solving successively 

Eqs. (29) and (28). 
In the case of homogeneous reflection ρ(r, s, s

0
) ≡ q(r) 

from formulas (28) and (29) it follows10 
 

q(r) = 
U(r)

E
0
 + ⌡⌠

–∞

 ∞

 
 
–
Oh(r – r′) U(r′) dr′

, (30) 

 

where 
 

U(r) = Z(r, s, s
0
)⏐

ρ≡q(r) , 
 

E
0
 = 2⌡⌠

0

1

 
 D0(h, μ, ζ) μdμ + ζ S

λ
 e

–τ0/ζ
 , 
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–
Oh(r) = 

1
π ⌡⌠

Ω
+

 
 
–
O(h, r, s) μds , 

 

–
O(z, r, s) = ⌡⌠

Ω
–

 
 O

δ
(z, r, s, s′) ds′ . 

 

Equations (28) and (29) are already new mathematical 
objects. Numerical procedures for their solving have not yet 
been developed. The following conclusion can obviously be 
drawn from Eqs. (28) and (29): in order to reconstruct the 
function ρ(r, s, s

0
) the brightness measurements have to be 

available for all s ∈ Ω
–
. The present instrumentation provides 

the measurements to be done only for a number of discrete 
directions {si}, where si ∈ Ω

–
. This must be taken into account 

when developing the algorithm for calculating the functions 

Z(r, s, s
0
) and ρ(r, s, s

0
). For ρ(r, s, s

0
) ≡ ρ

–
(s, s

0
) the 

equations for Z
–

(s, s
0
) and ρ

–
(s, s

0
) can be directly obtained 

from Eqs. (18) and (19) or from Eqs. (16)–(18). These 
equations have the form 

 

2⌡⌠
0

1

 
 –ρ  

0(μ, μ′) D0(h, μ′, ζ) μ′dμ′ + ζ S
λ

–ρ(s, s
0
) e

–τ0/ζ
 = 

 

= – 
1
π⌡⌠
Ω

+

 
 –ρ (s, s′) 

–
J(h, s′, s

0
) μ′ds′ + 

–
Z(s, s

0
) , (31) 

 

where 
–
J(h, s, s

0
) = ⌡⌠

Ω
–

 
 Ψ

δ,0
(h, s′, s

0
) 
–
Z(s′, s

0
) ds′ 

 

and 
 

–
Z(s, s

0
) T(μ) +⌡⌠

Ω
–

 

 A
δ,0

(z, s, s′) 

–
Z(s′, s

0
) ds′=

–
I  – D , s ∈ Ω

–
.(32) 

 

From the point of view of calculations a more simple 
approach to solving the inverse problem is based on models 
(18) and (19) constructed using the method of space–
frequency characteristics. Let us demonstrate the abilities of 
the method of reconstructing the reflection coefficient using an 
example of a homogeneous surface. For this consider Eq. (20). 

In order to determine N unknown values q–n it is necessary to 

have N independent angular measurements I
–

i. All the values 

obtained for s = si are denoted below by the subscript i. Based 

on Eq. (20) we have the system of equations 
 

∑
n=1

N

 

 q–n ⎣
⎢
⎡

⎦
⎥
⎤

Ψ
–

δ,0, n(z, si, s0
) + 

q–Ψ
0
(z, μi)

1 – qc
0

 C
–

δ,0, n(ζ)  = 

–
I i – Di. (33) 

 

For realistic values of τ
0
 and q– the inequalities q–C

–
δ,0, n(ζ) � 1 

and q–c
0
 � 1 , whence  

 

q–Ψ
0
(z, μi)

1 – q–c
0

 C
–

δ,0, n(ζ)) � Ψ
–

δ,0, n(z, si, s0
)  

 

are valid.  

Taking into account the latter inequality we solve 
system (33) by the iteration method, and neglecting at the 

first iteration the term 
q–Ψ

0
(z, μi)

1 – q–c
0

 C
–

δ,0, n(ζ) compared to  

Ψ
–

δ,0, n(z, si, s0
). Let us replace system (33) by the following: 

 

A(j)
 q–(j) = b , (34) 

 

where q– 
(j) = {q–

1
, ..., q–n} is the sought vector; A(j) = {a(

 
j)

i. n} 

is the N by N matrix with elements 
 

a(
 
j)

i, n = Ψ
–

δ,0, n(z, si, s
0
) + (1 – δj–1,0

) 

q– 
(j–1)
n  Ψ

0
(z, μi)

1 – q–(j–1)
n  c

0

 C
–

δ,0, n(ζ)) , 

 

δl, 0 = {1, l = 0
0, l ≥ 1  is the Kronecker symbol; b = {bi} is the 

vector with the components bi = I
–

i – Di, 1 ≤ i ≤ N, j(j ≥ 1) 

is the iteration number, q– 
(0)
n  are arbitrary limited numbers, 

for example, q– 
(0)
n  = 1 for all n ≥ 1. 

Solution of system (34) has the form 
 

q– 
(
 
j)

n  = ∑
i=1

N

 
 bi A

(
 
j)

i, n/det A(
 
j) , 1 ≤ n ≤ N , (35) 

 

where A(
 
j)

i, n is the algebraic cofactor of the element a(
 
j)

i, n. By 

passing to a limit we obtain the solution of system (33):  

q–n = lim
j→∞

 q– 
(
 
j)

n , where 1 ≤ n ≤ N. Because of a weak 

nonlinearity of system (33) it is quite sufficient to make the 

second iteration, i.e., q–n ≈ q
–

 
(2)
n , where 1 ≤ n ≤ N. After 

determining all the values the reflection coefficient is 
calculated using formula (4). Radiative characteristics  

Ψ
–

δ,0, n(z, si, s0
), Ψ

0
(z, μ), c

0
, C

δ,0, n(ζ) and Di entering into 

the solution are computed by accessible means of the 
numerical analysis.7,9,11,12,14 

Similar approach is used for solving an inverse problem 
in the general case of an inhomogeneous surface based on 
model (19). 

 
CONCLUSION 

 
The mathematical model of radiative transfer in the 

plane–parallel atmosphere above the surface with 
inhomogeneous non–Lambertian reflection is presented. The 
model is used for statement and solution of the inverse 
problem on reconstructing the reflection coefficient of the 
underlying surface from photometric measurements. For 
reconstructing the angular structure of the reflection 
coefficient one should use a set of angular measurements of the 
brightness of upward radiation or the brightness coefficient of 
the atmosphere–underlying surface system. The reconstruction 
algorithms are realized by means of numerical analysis of the 
boundary–value problems of the radiative transfer theory. 
These algorithms can be used for atmospheric correction of the 
ground–based and spaceborne measurements. 
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