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The current progress in the technology of high-power femtosecond lasers opens new promises in 
solution of urgent problems of atmospheric optics. In particular, stable supercontinuum of directed 
white light generated in the atmosphere by a high-power laser pulse can be used as a white-light 
lidar for remote analysis of optical and microphysical properties of atmospheric aerosol. Using the 
experience gained in solving inverse problems of laser sensing, we develop the technique for solution of 
such problems with the use of a white-light lidar. As a first and necessary stage of the study, a closed 
numerical experiment was conducted. This paper discusses its results as applied to multifrequency 
sensing of aerosol along vertical paths in the visible and near-IR spectral ranges. Spectral ranges for 
sensing are selected, and noise immunity of the retrieval algorithms at wide-aperture reception is 
analyzed. 

 

Introduction 

The recent progress in nonlinear optics 
connected with the study of spectral superbroadening 
of terawatt laser radiation in gas media 

1,2 has led to 
discovery of the phenomenon of filamentation 
accompanied by directed conical radiation in a wide 
spectral range from the UV to the mid-IR. 

3–5 The 
most stable results on extended (up to several meters 
long) collective filamentation are obtained by now 
with the use of a femtosecond Ti:Sapphire laser with 
λ = 775–800 nm, pulse duration of 35–100 fs, and 
peak pulse power of about 2 TW (that is, about 
1015 W/cm2 per one filament). 

5,6 Precision 
measurements made in Ref. 5 showed that the 
spectrum of the emitted supercontinuum extends at 
least from 300 to 4500 nm. 

The high energy density and wide spectral band 
characteristic of high-power femtosecond pulses in air 
open principally new possibilities for remote optical 
sensing of the atmosphere, allowing the combination 
of the unique properties of a lidar and high-resolution 
Fourier Transform spectroscopy. In this paper, we 
dwell on one particular aspect of the problem 
concerning the lidar sensing of atmospheric aerosols. 
A white-light lidar allows a new look at the 
multifrequency sensing of microphysical parameters of 
aerosol particles, abandoning, in the first turn, the 
use of bulky and difficult-to-control multilidar 
systems. 

7 It becomes possible to select the sensing 
wavelengths informative for a given class of 
problems. Technological advances in miniaturization 
of Ti:Sapphire and new lasers with similar 
performance characteristics 

8 open the prospects for 
creating multifunctional aerospace white-light lidars 
(WLL). However, in this case, some specific 
problems connected with uncertainty in the lidar 

equation arise, and, in our opinion, it is worth 
solving these problems within the framework of 
computer experiment. 

1. Model of numerical experiment 

As a physical prototype of WLL, we took the 
structure and geometry schemes of the active 
Teramobile mobile femtosecond-terawatt laser and 
detection system. 

9 The sensing scheme is close to the 
monostatic one, that is, it provides for complete 
overlap of the field of view of the source and the 
receiving telescope up to the bottom boundary of the 
volume under sensing. A series of ultrashort laser 
pulses (pulse duration ti = 70 fs, frequency 
f = 10 Hz, energy ∼  350 mJ, and wavelength 
λ = 793 nm) from a Ti:Sapphire laser produces a 
cylindrical filament ∼  50 mm in diameter at the 
distance z = 30–70 m. It is a source of conically 
directed white light (supercontinuum).  

The propagation direction is vertically upward 
(along the OZ axis). According to the available 
estimates, 

6,9 the angle of divergence of the 
supercontinuum radiation is 2ϕs = 1–30 mrad. The 
acceptance angles of traditional lidar systems are 
much smaller; therefore, they are set as parameters 
2ϕd = 2, 10, 20, and 35 mrad. The geometry of the 
possible experiment is shown in Fig. 1.  

The Monte Carlo numerical experiment was 
aimed at revealing the possibility of retrieving the 
vertical profiles of optical and microphysical aerosol 
characteristics under conditions of noticeable 
multiple scattering background and uncertain optical 
relations. Therefore, the a priori optical model 
assumed a stratified aerosol layer ∆z = 0.1 km with 
the sufficient optical thickness τa = 1–1.5 and the 
known model particle size spectrum to be present at 
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the distance z = 0.2 km from the source. As a well-
known reference spectrum, we took the water haze Í 
(Ref. 10): 

 ( ) exp( ), 0f r ar br rα γ= − ≤ ≤ ∞ ,   (1) 

where a = 4 ⋅⋅⋅⋅ 105, b = 20.0, α =2.0, and γ = 1.0. 
 

 
 

Fig. 1. Experimental geometry. 

The corresponding coefficients of optical 
interaction for the selected array of wavelengths 
λi, i = 1–4, are calculated through the Mie 
diffraction equations.10 Selecting a set of wavelengths 
informative from the viewpoint of retrieval of the 
aerosol particle size spectrum is an independent 
problem. When sensing in wide spectral ranges, we 
should select, first of all, the working wavelengths, 
that is, the most informative range for sensing  a 
given disperse medium. If it is known, for example, 
that the radii of particles in the medium r ∈  [0, R],  
and the optical sensing can be carried out in  
principal in any wavelength range λi, then the most 
informative is the range, for which the functional 
F(Kr) reaches the extreme value.11 Here Kr is the 
factor of optical interaction. The functional F 
characterizes the smoothness of the Kr(r) behavior. 
For the chosen unimodal model (1), this problem is 
not difficult and gives the range of λ from 400 to 
800 nm with the roughly uniform arrangement of 
subranges λi.  

Another factor determining the proper selection 
of λi is the presence of Î2, Î3, and Í2Î absorption 
lines even in the visible transmission spectrum. It is 
commonly known (see, for example, Ref. 12), that 
strong frequency dispersion in the region of optical 
resonances or in narrow absorption lines leads to 
significant transformation of integral characteristics 
of an optical signal. These effects intensify as the 

pulse shortens even under the linear propagation 
conditions. The effects of spectral and temporal 
transformation of a signal obviously can have an 
independent significance for remote determination of 
spectral line parameters of minor gaseous constituents 
under field conditions. This issue calls for separate 
consideration, and in this paper the active spectral 
ranges are selected based on a priori exclusion of 
spectroscopic phenomena. 

Figure 2 depicts the transmission spectrum of 
the gas atmosphere in the selected spectral range as 
calculated by the well-known k-distribution method 

13 
with the step ∆λ = 10 nm.  

 
Fig. 2. Spectral ranges selected for sensing. 

Temperature, pressure, and concentration of 
gases and Í2Î vapor correspond to the tropospheric 
model of the mid-latitude summer. The joint 
consideration of the formulated requirements has led 
to selection of the following particular sensing 
wavelengths: λi = 0.5, 0.61, 0.67, 0.78 µm, which are 
shown by vertical lines in Fig. 2. 

2. Solution of the direct problem 

Correct statement of the direct problem of lidar 
sensing assumes a solution of the nonstationary 
radiative transfer equation under complicated 
boundary and initial conditions representing the 
actual experimental scheme. The rigorous analytical 
solution of such problems is not obtained yet. Among 
numerical methods, the most rational is the Monte 
Carlo method. Within the framework of this method, 
the radiative transfer equation is usually written in 
the integral form 

14: 

 ′ ′ ′= + ψ∫( ) ( , ) ( )d ( );

X

f x k x x f x x x   (2)  
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with the stochastic kernel determining the transition 
density of the Markovian chain of random collisions 
of a particle (photon) in the disperse medium. 

In Eqs. (2) and (3):  

 f(x) = σ(r)I(x)  

is the collision density;  

 I(x)= I(r, ω, t)  

is the radiation intensity at a point of the phase space 
x ∈  X; 

 X = {r ∈  R ⊂  R3, ω = (a, b, c) ∈  Ω = (a2
 + b2

 + c2
 = 1)};  

g(µ, r) is the scattering phase function satisfying the 
normalization condition  

 

−

µ µ =∫
1

1

( )d 1;g
-

 

µ = (ω, ω′) is the cosine of the scattering angle; 

 ′τ = σ∫
0

( , ) ( , )d

l

r r r t t  

is the optical length of the segment [r, r′]; 

 l =  r′ – r ;  

 σ(r) = σà(r) + σs(r)  

is the extinction coefficient; σa, σs are the absorption 
and scattering coefficients including the additive 
parts of the aerosol and molecular components; ψ(x) 
is the source distribution density describing the 
spatial-angular distribution of radiation from the 
source, the initial pulse shape  

 0 0 0( ) ( ) ( ) ( );x p r p p tΨ = ω  =∫ 0( )d 1

R

p r r  

and so on. Among numerous modifications of the 
Monte Carlo method, the method of local estimation 
is efficient for lidar problems with localized sources 
and receivers of radiation. Essentially, this method 
consists in the following. Let x*(r*, ω*, t*) ∈  D, 
where D is the phase volume of some optical 
detector, D ∈  X, D << X. Assume that in Eq. (2) 
x = x*, ψ(x*) = 0, and σs = σ. Write Eq. (2) in the 
form of a linear functional of the collision density 
f(x): 

  
∗′ ′ ′=

σ∫
( , )

( ) ( )d .

x

k x x
I x f x x   (4)  

Then, following Ref. 14, the statistical estimate of 
the functional  

 

∗ = ω Ω∫( ) ( , , )d d

ijD

J r I r t t  
 (5) 

at the point r* over some domain Dij = ΩiTj of 
directions and the times of recording takes the form 
 

 
0

( ) ( , ),
N

n nij

n

J r M Q x x∗ ∗

=

= ξ∑%   (6) 

where Ì denotes the mathematical expectation; 
n = 1, 2,…, N is the number of a random photon 
collision; Qn is the statistical weight of a photon 
compensating for the fictitious character of 
transitions k(xn, x*); 

  
2

exp[ ( , )] ( , )
( ) ( );

2
ij j

r r g r
t

r r

∗ ∗
∗ ∗

∗

−τ µξ = ∆ ω ∆
π −

  (7) 

 µ*
 = (r*

 – r)/ r*
 – r ;  

∆i, ∆j are the indicators of the domain Dij. 
We have considered the commonly known 

aspects of Eqs. (5) and (6), because application of 
the local estimate (6), in spite of its efficiency, is 
connected with certain, generally insuperable 
difficulties. The factor 1/|r – r*|2 in Eq. (7) leads to 
the square divergence at |r – r*| → 0 and, 
consequently, to the uncontrollable variance of the 
estimate. Formal removal of the phase volume of the 
detector D outside the scattering medium, as in the 
standard practice, is not always allowable. This takes 
place in the case of the considered scheme of a white-
light lidar. 

However, just the specificity of a lidar signal 
recording allows us to propose a simple method 
stabilizing the estimate (6). As will be noticed below, 
most existing methods for inversion of the lidar 
equation, i.e., Eq. (2) in the single scattering 
approximation, do not employ the intensity of the 
incoming radiation I(r, ω, t) as input physical 
functional, but the relative, square amplified signal 
of the form  

  2

0

( )
( ) ,

I z
S z z

I
=   (8) 

where I0 is the intensity of the emitted signal; z is 
the reduced height of the sensed area. 

The results of numerical experiments have 

shown that for statistical estimation of ( )S z%  Eq. (7) 
can be used without the factor 1/|r – r*|2. The shift 
of the result is compensated by a posteriori 

processing of the histogram ( )jS T% ; the result has a 

finite invariance. 
The method considered was used for calculation 

of relative backscattering signals from the 
supercontinuum in the selected spectral ranges and 
for solving the corresponding system of lidar 
equations under the conditions of possible noise. 

3. Solution of the inverse problem 

3.1. Retrieval of the vertical profile  
of extinction coefficients 

The information about the character of aerosol 
formations in the atmosphere is needed for analysis of 
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weather formation and monitoring of environmental 
pollution. Practical application of new-generation 
meteorological white-light lidars, which allow 
obtaining of detailed information about the 
atmospheric aerosol microstructure, requires a 
particular attention to methodological problems 
concerning the retrieval of the information from 
measurements. In spite of significant progress in this 
sphere, the requirements to increase the efficiency of 
the interpretation methods remain valid. The range of 
applicability of classical methods 

15 is significantly 
limited because of the ambiguous mutual behavior of 
the coefficients of total scattering and backscattering 
that are connected by the well-known lidar equation 
 

 ( ) ( ) ( )−
π

  ′ ′= β − σ 
  
∫

2

0

0

exp 2 d ,

z

P z BN G z z z z   (9) 

where P(z) is the amplitude of the backscattering 
signal as a function of distance; N0 =P0(cτ/2) is the 
energy of the initial sensing pulse; B is the 
instrumental function including characteristics of 
transceiving apertures; βπ(z)=σs(z)gπ(z) is the volume 
backscattering coefficient; gπ(z) is the absolute value 
of the vector of the scattering phase function for the 
scattering angle  of 180°; G(z) is the geometric 
function accounting for the mutual overlap of the 
fields of view of the source and the receiving 
telescope (detector). A characteristic feature of 
boundary conditions for this problem is, as can be 
seen from Fig. 1, the fact that the detector’s fields of 
view can only partly cover the single scattering 
volume. The information about microphysical 
characteristics of the scattering medium is contained in 
the functions σs(z), σ(z), and βπ(z) to be estimated. 

Equation (9) cannot be solved for these 
variables without simplifying assumptions or a priori 
information about the relation between them. Thus, 
in the selected wavelength range the assumption 
σs(z) = σ(z) is justified. At the single-frequency 
sensing, the profile of the molecular extinction 
coefficient σm(z) is also assumed known from the 
standard model, although it depends on the 
meteorological parameters of the atmosphere. The 
aerosol scattering coefficient and the scattering phase 
function can vary quite widely. This is explained 
both by the various origin of atmospheric aerosol and 
the interaction of aerosol particles with random 
humidity and wind fields in the atmosphere. The 
methods analyzed in Ref. 15 assume that the 
scattering phase function remains constant with 
height. Along with the multiple scattering, this 
assumption leads to the uncontrollably high error in 
determination of optical parameters of scattering 
particles and, consequently, their microstructural 
characteristics. 

Possible ways to compensate for the shift of the 
results due to the multiple scattering background 
were discussed in Ref. 15. Along with them, the 
processing algorithm proposed in this paper allows 

one to approximately take into account the spatial 
variations of the scattering phase function, as well as 
the errors of recording and square amplification of 
the signal. An advantage of this method is the 
possibility of operating with arbitrary comparable 
units, that is, the prior calibration of the 
measurement instrumentation is not needed. 

The procedure of the signal processing is based 
on the iterative solution of Eq. (9), which assumes 
prior basic measurements of σ(z0) and gπ(z0) at the 
initial part of the path. Some prerequisites for this 
approach were formulated in Ref. 16. Thus, for the 
discrete scheme of processing of the signal P(z) by 
the readouts zj, j = 1, 2, …, Eq. (9) can be 
transformed as follows:  

  2

1

1

( )
( ) ( ) ( ),

( )

j
j j j

j

z
S z S z T z

z

π
−

π −

β
= ∆

β
  (10) 

where  

 ( ) ( ) ( )0[ ];S z P z z AN G z=   ( ) ( ) ( )πβ = β + β
a m

z z z ; 

 2

1( ) exp{ [ ( ) ( )], 1,2,..., .j j j jT z z z z j k−∆ = −∆ σ + σ =  

As was noted in Ref. 17, for a femtosecond lidar 
with a characteristic wide (up to 2°) radiation cone 
the effect of the geometric function G(z) is 
significant. Correct consideration of G(z) is 
nontrivial. Therefore, we assume that the ratio of the 
solid angles of emission and reception in the 
neighboring strobes ∆zj = zj – zj–1 remains constant, 
then 

  
2

2

1 1 1

( ) ( )
,

( ) ( )

j j j

j j j

S z P z z

S z P z z− − −
=   (11)  

and the unknown, generally speaking, values of the 
instrumental function B(λ) are cancelled at such an 
approach. In the case if the radiation in the cone is 
isotropic, i.e., p(ω) = const, this assumption is 
correct, otherwise additional refinements are needed. 
 The solution of Eq. (10) for σa(z) and βa(z) 
results from the iteration procedure carried out at 
each part of the path: 

( )
( )−

π − − − −
−

   β β β = ∆ + − β  
      


 = β ∆ σ + σ


1

m a

a m

m a

m a1 1 1 1

1

( ) ( )
( ) ( )exp ( ),

( )

( )
( ) ( )exp{ [ ( ) ( )]},

( )

m
j jm

j j j j
j

j
j j j j j

j

z z
z F z z z

g g z

S z
F z z z z z

S z

 

   (12) 

where gm and gà(z) are the molecular and aerosol 
scattering phase functions in the direction of 180î; βm 
and βa are the corresponding components of the 
backscattering coefficients; m is the iteration number. 
 It can be shown 

15 that such iteration procedure 
converges with the rate of a geometric series provided 
that τ(∆zj) < 1, which can be easily obtained in the 
experiment. The method represented by Eqs. (10) 
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and (11) is the basic one, that is, it requires a priori 
estimation (measurement) of the coefficients σ(z0) at 
a certain part of the path. In our experiment, this 
problem is solved by invoking a parallel method for 
retrieval – the so-called method of asymptotic 
signal, 

15 which is optimal for retrieval of σ(z0) at the 
closest boundary of the scattering layer. 

Some difficulties connected with the need of a 
priori model prediction of gà(z) values remain valid. 
Here it is possible to use a modification of the 
iteration method (10), (11) developed in Ref. 18 and 
using the heuristic dependence  

  π π πβ = τ + πlog log log /4K C   (13)  

with Kπ = 0.69 and Cπ = 0.51.  
On the other hand, as was shown in Ref. 18, if 

we neglect the errors of the instrumental origin and 
the errors in determination of basic values, that is, 
δF0 and δσ0, then for the mutual relative errors in 
determination of the unknown values of the 
extinction coefficient and the scattering phase 
function gx(z) we have  

  δgx = δσx(τx – 1),  (14) 

where τx = σx∆zi. It follows herefrom that δβ → 0 at 
τx → 0. This fact was earlier mentioned in Ref. 11, 
but in this algorithm it shows itself in the situation 
that at the reasonable processing interval 2τx = 0.05 
the error in a priori setting δgπ ≅  50% leads to the 
error δβà = 1–2% in determination of βà. 

3.2. Method for retrieval of aerosol 

microstructure  

Assume that the function s(r) describes the 
aerosol particle size distribution in the unit volume of 
the scattering medium. In the problems of laser 
sensing, the form of s(r) can change depending on 
the spatial coordinates. Mathematically, the problem 
of s(r) determination from the spectral dependence of 
the aerosol extinction coefficient σ(λ) consists in 
solving the first-kind integral equation  

  λ = σ λ∫
0

( , ) ( )d ( )

R

K r s r r , (15) 

where K(λ, r) is the extinction efficiency factor  for 
an individual particle of the radius r at the 
wavelength λ, which also depends  on the complex 
refractive index of the particulate matter m – iκ.  

In the general case, the complex refractive index 
and the upper boundary of the particle size R can be 
also unknown. Inversion of Eq. (15) is an ill-posed 
problem. Construction of approximate solutions for 
ill-posed inverse problems, stable to small changes in 
initial data, requires the use of special mathematic 
methods. 

19 The theory and efficient methods for 

solution of this-class problems are now well 
developed. The comparison of different methods of 
inversion of the spectral aerosol extinction 
coefficients was carried out in Ref. 20.  

The methods and algorithms for solving the 
inverse problems of laser sensing of the atmospheric 
aerosol developed in the IAO SB RAS were 
successfully tested in practice. 

11 Consider briefly the 
particular version 

21 of constructing the regularized 
solution of Eq. (15) based on the Tikhonov method 
that was used in computer experiment on laser 
sensing of a model aerosol medium.  

At the first stage, the transition from the 
integral equation (15) to the discrete analog of the 
problem is performed. For the given system of nodes 
rj, j = 1, 2, …, n, the effective finite-difference 
approximation of the integral in the left-hand side of 

Eq. (15) is achieved by replacing ( )s r  at each 
subinterval [(rj–1 + rj)/2, (rj + rj+1)/2] with the 
Lagrange interpolation polynomial constructed by the 
nodes rj–1, rj, rj+1. In practice, it is usually believed 
that the input data are presented by measurements of 
the extinction coefficient σi = σ(λi) at a finite set of 
wavelengths λi, i = 1, 2, …, m. As a result, the 
integral equation (15) is replaced by the ill-
conditioned system of linear algebraic equations 
As = σ for the vector s with the components 
sj = s(rj). The vector of the approximate regularized 
solution sα can be found from solution of the 
following system of linear algebraic equations: 

  α+ α = σ* *( ) ,A A D As   (16) 

where A* is the matrix transposed to the matrix A; D 
is the smoothing matrix; α is the regularization 
parameter. In Eq. (16), α should be selected in 
accordance with the value of the error in the initial 
data, for example, by the discrepancy criterion. 

19 
When solving inverse problems of lidar sensing, the 
errors connected, for example, with the presence of 
multiple scattering background, nonsphericity of 
scattering particles, or insufficiently accurate value of 
the refractive index hamper estimation of the error in 
the input data in Eq. (15). Under these conditions, 
the most efficient method is to use such criteria for α 
selection, which do not depend explicitly on errors in 
the input information. We have considered two such 
criteria, namely, the selection of the regularization 
parameter by the criterion of the quasioptimal value 
of α [Ref. 19] from the condition of minimum of the 
functional  

 α′α = α1( )F s  (17) 

or based on the principle of minimal discrepancies 

22 
from the condition of minimum of the functional 

  α αα = − σ + − σ2( )F A APs s , (18) 

where P is the operator of projection onto the set of 
non-negative functions  
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( ), ( ) 0

( ) .
0, ( ) 0

r r
P r

r

α α
α

α

≥ 
=  < 

s s

s

s

 (19) 

It was found in the numerical experiments that 
these criteria give close results. 

4. Results of computer experiment  

Backscattering signals calculated through 
numerical solution of Eq. (1) were then used for 
retrieval [within the method (10), (11)] of the 
vertical profiles of σ(z) and βa(z) for the given 
boundary and optical conditions of the possible 
physical experiment at λi = 0.5, 0.61, 0.67, and 
0.78 µm. Figure 3 depicts the results of retrieval of 
σ(z, λi) for three of four wavelengths depending on 
the aperture conditions of detection 
ϕd = 2, 10, 20, 35 mrad.  

 

220 240 260 280 

0.006 

0.008 

0.010 

0.012 

0.014 

1 

1 

σ, km–1 
1

0.78 µm 

0.67 µm 

λ = 0.5 µm 

z, m 
Fig. 3. Retrieval of extinction coefficients from model 
signals for optically homogeneous medium. 

 
For the model of a homogeneous medium 

σ(z, λi) = const for  2.0 ≤ z ≤ 2.3 km. The model 
profiles σ(z, λi) are shown by the straight lines 
σ(z, λi) = Cλi, Cλi = const. The dependence on the 

angle of reception is almost absent until ϕd < ϕs. This 
indicates that at small optical thickness τ ≈ 1–1.5 the 
multiple scattering background increases quite 
uniformly all over the sensing area, rather than 
exponentially as usually. The accuracy of retrieval 
increases with the increasing wavelength, and this 
correlates with the decrease of the medium optical 
density and the role of molecular scattering. In Fig. 4 
the similar results are depicted for the model of an 
inhomogeneous medium. The model profiles σ(z, λi) 
are shown by curve 1. The physical character of the 
dependences keeps the same. A principally new 
feature of the presented results is that the optical 
parameters of the medium under sensing are retrieved 
from a small part of the single scattering signal under 
the noise conditions. 

220 240 260 280 
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λ = 0.5 µm 

1
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Fig. 4. Retrieval of extinction coefficient for optically 
inhomogeneous medium. 

 

The profiles of the extinction coefficient σ(z, λ) 
retrieved in the numerical experiment from solution 
of the lidar equation based on the algorithm (10), 
(11) were then used for solution of the inverse 
problem of reconstructing the particle size 
distribution s(r) along the lidar path. As an example, 
Figs. 5 and 6 show families of the aerosol size 
distributions s(r) reconstructed from inversion of the 
spectral dependences  σ(z, λ) depicted in Figs. 3 and 
4 for the homogeneous and inhomogeneous scattering 
media at the angle of reception ϕd = 2 mrad.  

As can be seen from the results presented, the 
reconstructed distributions s(r) keep a rather stable 
shape and quite adequately correspond to the initial 
haze model H. In the case of a homogeneous medium, 
the modal value of s(r) also keeps rather stable level. 
For the inhomogeneous medium, the modal value in 
the aerosol size distributions  s(r) has a nonmonotone 
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behavior, following the nonmonotone profiles 
 σ(z, λ). 
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Fig. 5. Aerosol particle size distributions reconstructed in 
the numerical experiment from lidar signals at a 
homogeneous path. 
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Fig. 6. Aerosol particle size distributions reconstructed in 
the numerical experiment from lidar signals at an 
inhomogeneous path. 

 

Conclusion 

Our numerical investigations have confirmed the 
wide potentialities of the broadband directed 
supercontinuum radiation generated by the 
femtosecond lidar as applied to remote monitoring of 
microphysical and optical characteristics of 
atmospheric aerosol. The computer experiment was 
conducted within the framework of the Monte Carlo 
method with the use of the new modification 
excluding a divergence of the local flux estimate. The 
iteration algorithm for retrieval of the vertical 
profiles of the extinction coefficient proved itself to 
be good under the conditions of deficient information 
about optical sensing channels. The results of  
 
 

reconstruction of the vertical stratification of the 
aerosol  particle  size spectrum adequately reflect 
the chosen optical model under the conditions of the 
rather high multiple scattering background. 
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