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Self-broadening and self-shift coefficients of vibration-rotation lines of water molecules are 
calculated using a semi-empirical method. The method is based on the impact theory of broadening, 
modified through including additional parameters, obtained by involving empirical data. Model 
parameters are determined by fitting the broadening and shift coefficients to experimental data. The 
calculations are made using anharmonic wavefunctions, determined by the variational method. This 
approach takes into account contributions of all scattering channels, induced by collisions of 
molecules. The calculation results well agree with experimental data. 
 

Introduction 

The coefficients of water vapor line broadening 
and shift induced by the pressure of N2, Î2, H2O, as 
well as other atmospheric gases, are of interest to 
many atmospheric applications and, in particular, to 
atmospheric laser sensing problems. The availability 
of many precise measurements of water vapor line 
parameters in microwave, IR, and visible spectral 
range1–4 makes it possible to check and further 
improve the impact theory of the spectral line 
broadening. More exact calculations of half-widths 
and shifts of water vapor line centers require the 
development of semi-classical Robert–Bonamy 
theory,5 being presently the main calculation method. 
Apart from revising and refining the general formulae 
of the theory, it is necessary to know exact 
wavefunctions, energy levels, and collision-induced 
transition probabilities. It should be noted that the 
majority of previous works,6–10 used the 
wavefunctions determined by the method of effective 
rotational Hamiltonians. 

In this paper, we estimate the inter-molecular 
effects on line broadening and shift with the help of 
exact vibration-rotation wavefunctions, calculated by 
the variational method, describe the theoretical 
foundations, and present certain details of line profile 
calculations. In addition, we present the results of 
calculations and discuss their comparison with 
experimental data. 

1. Basic formulas and calculation 
details 

For calculation of vibration-rotation spectrum of 
triatomic molecules, modelers have developed a 
number of methods, which use the direct solution of 
the Schrödinger equation. These methods can ensure 

the accuracy close to the experimental one. The 
quality of these calculations is determined 
predominately by the quality of potential energy 
surface, which in most cases involves the Born–
Oppenheimer approximation. For our calculations, 
we also need the matrix elements of the dipole 
transition moment, which are calculated using dipole 
moment surface. The best is the Partridge–Schwenke 
surface,11 obtained from ab initio calculations. 

For the calculations, we use the energy levels 
and dipole moments from the BT2 list.12 The BT2 
line list contains all the transitions between the 
vibration-rotation states of water up to 30 000 cm–1 
(22 1 000 states, 5.08 × 108 transitions), for which the 
rotation quantum numbers reach J = 50.  

For calculations of coefficients of water 
molecule spectral line broadening and shift, induced 
by the pressure of different atmospheric gases, we 
used a semiempirical method, similar to the 
Anderson–Tsao–Curnutte (ÀÒÑ) approach.3,14 This 
method works in the framework of the impact theory 
approximations. General assumptions in this case are 
as follows: the collisions are binary, their lengths are 
shorter than the inter-collision times, and the 
translational particle motion is described by the 
classical-trajectory approximation, with the line 
interference disregarded. The semiempirical method is 
described in Ref. 15 in detail, and only its outline is 
given here. 

According to the general considerations of the 
semiclassical theory, the halfwidth γif and shift of 
line center δif of the transition i→f can be written as 
follows: 
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The efficiency function U(i, f, p, b, v) has the 
form 
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Here, n is the density of perturbing particles; ρ(p) is 
the population of the level p; p is the set of quantum 
numbers of the second (perturbing) molecule; v is the 
relative velocity of colliding molecules; f(v) is the 
Maxwell velocity distribution function; b is the 
impact distance; S1 and S2 are the first- and second-
order expressions in terms of the perturbation theory; 
indices L and C correspond to the ”linked” and 
“connected” diagrams of the perturbation theory. The 
first-order term S1 is responsible for the adiabatic 
effect and is determined only by the isotropic part of 
the potential, while S2 is governed by its anisotropic 
part. Both functions depend on the “classic” 
trajectory of the relative motion of colliding 
molecules.  

Expressions (1) and (2) depend on forces of 
dipole transitions D2(ii′|l) and D2(ff′|l) of different 
scattering channels i → i′, f → f′, tying the lower and 
upper transition levels with other closely lying levels. 
These parameters are squares of reduced matrix 
elements of molecular constants, such as dipole 
moment or components of quadrupole tensor. The 
parameters of line profile in the Anderson theory are 
expressed as follows: 
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higher-order terms are neglected here. The formula 
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represents the efficiency function of scattering 
channels i → i′ or f → f′ (if ωii′ and ωff′ are replaced by 
ω). Formula  
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represents the usual summand of the Anderson 
theory, stipulated by the interruption (b0(v, p, i, f) is 
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is the contribution of the isotropic part of potential; 
α, μ, and ε are the polarizability, dipole moment, and 
ionization potential of the water molecule, 
respectively; α2 and ε2 are the polarizability and the 
ionization potential of the perturbing molecule; 
B1 = –3π/(8ħv); All′ are parameters for the 
determined ll-type of interaction; l = 1 corresponds 
to the dipole transitions, and l = 2 corresponds to 
quadrupole transitions in the absorbing molecule.  

The transition probabilities D2(ii′|l) and D2(ff′|l) 
refer to the scattering channels i → i′, f → f′, and 
they depend only on the properties of the absorbing 
molecule. The efficiency function Pl(ωii′) depends on 
the intermolecular potential, the trajectory of the 
relative molecule motion, energy levels, and 
wavefunctions of the buffer molecule. As Bykov et 
al.15 suggested, the efficiency function Pl(ω) can be 
represented as: 

 A( ) ( ) ( ),l l lP P Cω = ω ω  (5) 

where A( )lP ω  is the efficiency function in the 

Anderson theory; Cl(ω) is the correction factor, 
which is determined from the fitting to the 

experimental data. Whereas the function A( )lP ω  

determines all major contributions to the broadening, 
the factor Cl(ω) gives a small correction associated 
with accounting for certain fine effects. Calculations 
of line profile parameters for the case of H2O–N2, 
Î2, Í2Î were made using the correction factor, 
representing the j-dependent function: 
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where c1 and c2 are the fitting parameters. The form 
of the correction factor for Pl(ωii′) is analogous to 
formula (6) with index f replaced by i. 

The effective dipole polarizability in the upper 
vibration state was defined in Ref. 18. The 
calculations were made with parameters ñ1 = 1.23 and 
ñ2 = 0.08. The best agreement of the calculations 
with experimental values is achieved by varying the 
model parameters for three J intervals (Tables 1 and 2).  

 
Table 1. Root-mean-square deviation.  

Fitting parameters: c1 = 1.23, ñ2 = 0.08, and  
R0 = 7.76 is the gas kinetic diameter 

V1 V2 V3 RMSγ* RMSδ* 

3 0 1 0.006 0.00354 

2 2 1 0.00555 0.005052 

0 0 1 0.006223 – 

* RMS is the root-mean-square deviation. 

(2)



N.N. Lavrent’eva et al. Vol. 21,  No. 12 /December  2008/ Atmos. Oceanic Opt.   959 
 

 

Table 2. Root-mean-square deviation in the case of separating the calculation with respect to J values 
and varying the model parameters ñ1, ñ2, and gas kinetic diameter R0 

V1 V2 V3 J R0, Å c1 c2 RMSγ R0, Å c1 c2 RMSδ 

7.76 1.23 0.08 0.00949 7.76 1.23 0.08 0.00628 
J < 4 

10.0 1.5 0.1 0.00814 10.0 1.1 0.1 0.00453 

7.76 1.23 0.08 0.00616 7.76 1.23 0.08 0.00657 
3 < J < 6

7.76 1.25 0.1 0.00629 9.0 0.5 0.1 0.00277 

7.76 1.23 0.08 0.01484 7.76 1.23 0.08 0.00419 

3 0 1 

J > 5 
9.0 1.1 0.25 0.00911 10.0 1.1 0.1 0.00285 

7.76 1.23 0.08 0.00942 7.76 1.23 0.08 0.00733 
J < 4 

10.0 1.23 0.1 0.0071 10.0 1.23 0.1 0.00619 

7.76 1.23 0.08 0.00712 7.76 1.23 0.08 0.00567 
3 < J < 7

7.76 1.25 0.1 0.00706 7.76 1.25 0.1 0.00561 

7.76 1.23 0.08 0.01796 7.76 1.23 0.08 0.01510 

2 2 1 

J > 6 
7.76 1.1 0.1 0.0164 7.76 1.25 0.1 0.01479 

7.76 1.23 0.08 0.01264    
J < 4 

9.0 1.8 0.0 0.01618    

7.76 1.23 0.08 0.00716    
3 < J < 7

7.76 1.5 0.1 0.0074    

7.76 1.23 0.08 0.01153    

0 0 1 

J > 6 
9.0 1.5 0.08 0.01062    

 

2. Results and discussion 

Earlier, the above semiempirical method and the 
method of effective Hamiltonians were applied to 
calculation of line profile parameters and coefficients 
of their temperature dependence in the case of 
colliding molecules H2O–N2, H2O–O2, ÑÎ2–N2, and 

CO2–Î2.
9,

 

10,
 

16,
 

17 The results of these calculations 
were included in the carbon dioxide spectroscopic 
data bank18 and in the ATMOS information system,19 
freely available from internet.  

In the present paper, the semiempirical method 
is supplemented with the use of exact variational 
wavefunctions for the calculation of self-broadening 
and self-shift of water vapor lines. In principle, the 
use of the exact wavefunctions, obtained from global 
variational calculations, widens the applicability 
limits to the level of the molecule dissociation.  

The major contribution to the line self-
broadening and self-shift is made by the dipole-dipole 
interaction. We also take into account the higher-
order electrostatic interactions and polarization 
(induction and dispersion) interactions. The 
interruption procedure is applicable to molecules, 
characterized by strong interactions, when the radius 
of the closest approach of molecules is less than the 
interruption parameter, i.e., rc < b0, where rc is the 
radius of the closest approach, and b0 is the 
interruption radius. The interaction of two strong 
dipoles (H2O–Í2Î) ensures the fulfillment of the 
condition rc < b0; the influence of short-range forces 
is weak in this case and is accounted for via the 
correction factor.  

To take into account the contributions of 
different scattering channels, corresponding to 
collisional transitions, we used the transition 
probabilities D2(ii′|l) and D2(ff′|l), reconstructed 

from Einstein coefficients in the line list BT2. It was 
necessary to select the Einstein coefficients from 500 
millions of values, presented in the full BT2 list. In 
the calculation of line broadening and shift 
parameters, we took into account the scattering 
channels, induced by collisions and acceptable with 
respect to symmetry. In the present approach, they 
are much more abundant than in the case of the use 
of standard Watson Hamiltonian. We have found in 
the calculations that the contributions of the 
scattering channels with ωii′ > 700 cm–1 and 

3
a a

K K′− >  can be neglected. 
First of all, we performed test calculations for 

detailed analysis of factors, determining the 
variations of line broadening and shift coefficients. 
Then, we performed mass calculations of self-
broadening and self-shift coefficients of water vapor 
lines for 3ν1 + ν3, 2ν1 

+ 2ν2 

+ ν3, and ν3 vibration-
rotation bands, presented in the experiments.1, 20 All 
calculations were made for the temperature 
T = 297 K.  

Figure 1 presents the calculated and 
experimental self-broadening coefficients for three 
water vapor bands (N is the number of vibration-
rotation transitions).  

It is seen that the calculations are in satisfactory 
agreement with the experiment. For all three bands, 
RMS does not exceed 0.007 cm–1/atm. The self-
broadening coefficients of water vapor lines, 
calculated with the same set of fitting parameters for 
all bands, reasonably well correlate with 
experimental values. 

To achieve a better correspondence, we 
separated the data with respect to rotation quantum 
number, that is, we sought the parameters separately 
for small, medium, and high J. As an example, 
figure 2a presents the results, obtained with different 
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sets of fitting parameters for high J. The parameters 
for medium values are the same as for the whole 
band.  
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Fig. 1. Calculated and experimental water line self-
broadening coefficients: band 3ν1 

+ ν3 (à); band 

2ν1 + 2ν2 + ν3 (b); band ν3 (c); experiment1 (à, b) and data 
reproduced from Ref. 20 (c). 
 

The calculations of spectral line self-shift 
coefficients of water molecules are presented in 
Fig. 2b; the values for the calculated lines vary from 
– 0.09 to 0.06 cm–1

 ⋅ atm–1. Note that the line self-
shift coefficient increases by almost an order of 
magnitude in comparison with line shift induced by 
the pressure of non-polar molecules of the type of 
nitrogen or oxygen. The calculated self-shift 

coefficients, like the self-broadening coefficients, well 
correlate with experimental values. The water vapor 
lines with a large vibration quantum number are 
shifted by water vapor in a different way than by 
nitrogen or oxygen. Whereas nitrogen- or oxygen-
induced line shift is always negative for large V, 
which is determined by the predominance of 
induction-type interaction, the water vapor line self-
shift may be both negative and positive. This is 
because of the increase of the role of electrostatic 
interaction of colliding molecules: two strong dipoles 
interact in the Í2Î–Í2Î system. 

Thus, the presented method makes it possible to 
calculate the parameters of water line shape in the 
case of self-broadening up to the dissociation limit. 
The results, obtained by this method, are nearly as 
accurate as experimental. 
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Fig. 2. Calculated and experimental self-broadening 
coefficients for high J values (à), self-shift coefficients for 
medium J values (b) for the band 3ν1 + ν3 [Ref. 1]. R0 is the 
gas kinetic diameter, Å. 
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