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Two aspects of the adaptive system operation, i.e., the effect of the time delay and the 
spectral dependence of the quality of phase correction are analyzed. Numerical analysis is based 
on the most reliable model profiles of the spectral density of fluctuations of the atmospheric 
refractive index. 

 
One of the most widespread imaging systems is a 

ground–based astronomical telescope. When using such a 
telescope in the regime of adaptive compensation for 
atmospheric phase distortions of the wavefront, it 
additionally comprises such elements as the system of 
monitoring the phase distortions (the wavefront sensor), the 
computer system, and the controllable mirror incorporated 
in the optical system of the telescope.1 These elements 
compensate for the atmospheric distortions in real time. 

As any other system, the adaptive telescope has a 
finite frequency band in which the distortions can be 
effectively compensated. That is so because of the finite 
response time of the wavefront sensor, of the computer, and 
of the inertial controllable mirror. Thus the problem of 
determining the necessary frequency band or the maximum 
time delay between the measurement of the phase 
distortions and their subsequent compensation with the 
controllable mirror is quite important. 

The second problem we are going to touch upon in this 
paper, associated with the interferometric techniques used in 
the wavefront sensor of the telescope. For this reason the 
mesurements of the phase distortions of the wavefront and, 
hence, the control of the profile of the adaptive mirror are 
made in quite a narrow spectral band around a certain 
radiation wavelength (cut out with the help of the 
interference filter). At the same time, the telescope forms 
the image with quite a broad wavelength band typical of 
the observed sources of light. The problem of effectiveness 
of compensation for broad–band distortions with the use of 
the narrow–band measurements is formulated in special–
purpose publications (see Refs. 2 and 3) as the problem of 
"spectral characteristics of adaptive systems" or "two–
colour adaptive systems". 

Both these aspects have been already touched upon 
elsewhere by one of the authors.2,4–7 However, as a rule, an 
asymptotic analysis was performed in these publications. At 
the same time, a number of papers are now available, which 
in a definite sense contradict with the results obtained 
earlier.3,8,9 For this reason, we present the results of 
numerical calculations based on the most commonly used 
models of spectral density of fluctuations of the atmospheric 
refractive index along the vertical path. 

 
DYNAMIC CHARACTERISTICS OF ADAPTIVE 

OPTICAL SYSTEMS 

 
For our starting relation we make use of the 

representation of the field V(x, ρ) formed in vacuum in the 
arbitrary plane x 
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Here R is the radius of the input lens and ΩF = κR2/F. 

In the case of propagation through the atmospheric 
turbulence10 we have 
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Ds(ρ) = 6.88(ρ/r

0
)5/3 is the structure function of phase and r

0
 

is the Fried radius. We also note here that aperture function 
(4) has quite a simple and efficient approximation11 
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To estimate the effectiveness of the optical system, we use the 
Strehl factor 
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where 
 

K
~
(x) = 

2
π [arccosx – x 1 – x2] , 0 ≤ x ≤ 1 . 

 

Usually the traditional optical systems use the data of 
the current phase measurements to correct the distortions. 
Since the frequency band of any dynamic system is finite, 
the temporal delay between these measurements and 
control2 takes place. Let us introduce the notion of time 
constant of the delay τ. 

The traditional adaptive system with finite time delay 
may be classified as a system with "constant delay". To 

estimate the phase S
∧
 at the time moment (t + τ) in such a 

system we use the data of preceding measurements, i.e., 
 

S
∧
(r, t + τ) = S(r, t) . 

 

Then the phase term in the integrand, characterizing 
the residual distortions, can be written in the form 
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Substituting the phase term in Eq. (3) by expression (6), 
we obtain 
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Further we make use of the asimptotic behavior of 
integrand (6) to obtain: 
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where <I(0)> is given by Eq. (3), i.e., corresponds to a 
system without correction. Finally we have 
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where St is determined by Eq. (5). It can be easy seen from 
Eq. (9) that St → 1 as Ds(ντ) → 0 and as Ds(ντ) → ∞ as 

St(τ) → St, as in the system without correction. 
It is possible to describe the phase distortions of the 

optical wave expanding them in a series in the orthogonal 
modes.11 In addition, in calculating the average values 
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we make use of the expansion in the Taylor series 
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Using the expansion in a system of the Zernike 
polinominals12 
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)5/3, ρ = ρ(ρ, θ). Relation (14) is 

obtained from Eq. (12) retaining the terms up to the sixth 
mode. The representation Ds(ρ) = 6.88(ρ/r

0
)5/3 is well known 

for the Kolmogorov model of atmospheric turbulence10 and, 
strictly speaking, it uses the infinite number of modes in 
expansion (12). If we write the structure function of phase 
retaining the first six modes, we find 
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The following step in developing the adaptive systems 
consists in constructing a "fast" adaptive system. Control in 
such a system is fulfilled on the basis of the algorithm 
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In calculating the structure function of the residual 
phase distortions  
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is the structure function of phase distortions introduced by 
the atmospheric turbulence, 
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is the structure function derived when we retain the six 
modes in the expansion, 
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adaptive system. 

The results of numerical calculations based on these 
formulas are shown in Fig. 1 for the following values of the 
Strehl factors: 
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The calculated parameter here is (D/r
0
)5/3 while ντ/R is the 

generalized argument. The same figure shows the results of 
calculations based on formula (9). The values of ντ/R larger 
than St, can be easy found from these graphs. The graphs also 
show the advantage of the "fast" adaptation over the 
algorithm with "constant delay". 
 

SPECTRAL CHARACTERISTICS OF ADAPTIVE 

SYSTEMS 
 
Two–color adaptive systems are most often encountered 

in practice, since the wavelentgh in the reference channel and 
in the system of control differ from the corrected wavelength. 
Analitic relations were derived in Ref. 5 and the variance of 
difference between the characteristic functions and their 
structure functions was analyzed asymptotically. For example, 
the variance of the difference between the characteristic 
functions is 
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The Kolmogorov model of spectral density of function with 
a finite outer scale was used in our calculations 
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The vertical profile of the atmospheric turbulence was 
prescribed in the form 
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where h ∈ [0, L]. The following parameters were used in these 
calculations: outer scale 2π/κ

0
 = 100 m, inner scale 5.92/κm = 

0.01 m, path length L = 1000 m, starting height h
0
 = 30 m, 

height h
1
 = 300 m, Fried's radius r

0
 = 0.1 m at a wavelength 

of 0.55 μm, and diameter of reciving aperture D = 1 m. 
The results of calculations are given in Table I. The 

first column gives the wavelength at which the correction 
was made, the second column – the wavelength of the 
corrected distortions. The rest columns give the 
corresponding variances and the functions related to them. 

Numerical calculations were made for  
C

n
2(0) = 4.93⋅10–15m–2/3. The corresponding equivalent 

heigths in model (23) appeared to be equal to 
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The third column gives the variance of the residual 
phase difference resulting from the "two–color" correction. 
The fourth column gives the values of the same variable 
normalized by (D/r

0
)5/3, the fifth – the standard deviation 

normalized to 2π rad. Finally, the sixth column gives the 
standard deviation measured in μm. For comparison note 
that the variance of phase fluctuations is 0.76 × 102 under 
the same conditions (at the wavelength of 0.5 μm) 
 

TABLE I. 
 

λ
1
, 

μm 

λ
2
, 

μm 

 
σ
Δs
2
⋅103

σ
Δs
2
⋅105

(D/r
0
)5/3 

σ
Δs
2
⋅103

2π  
σ
Δθ
2
⋅103, 

μm 

0.50 1.0 3.12 5.55 8.88 4.44 
0.50 2.0 10.3 18.3 16.1 8.06 
0.50 3.0 17.0 30.2 20.7 10.4 
0.50 4.0 23.4 41.6 24.3 12.2 
0.50 5.0 29.5 52.6 27.4 13.7 
0.50 6.0 35.5 63.3 30.0 15.0 
0.50 7.0 41.4 73.6 32.4 16.2 
0.50 8.0 47.1 83.8 34.5 17.3 
0.50 9.0 52.7 93.8 36.5 18.3 
0.50 10.0 58.2 104 38.4 19.2 

 

The results of calculations given in Table I correspond to 
the outer scale of turbulence 2π/κ

0
 = 100 m. The calculations 

were also carried out for the model vertical profile  

2π/κ
0
 =2 h, and their results were practically identical to the 

data given in Table I. Thus, the variance of the difference 
between the characteristic functions at two different 
wavelengths is insensitive to the variations in the outer scale 
of turbulence. At the same time the variance of the difference 

between the characteristic functions σ
Δθ

2  is quite sensitive to 

the changes in the inner scale of turbulence and to the path 

length. Table II shows the dependence of σ
Δθ

2  on the changes 

in the inner scale of turbulence along the 1000–m path, and 
Table III illustrates such dependence on the path length for 
0.01 m inner scale of turbulence. 

 
 



908   Atmos. Oceanic Opt.  /December  1991/  Vol. 4,  No. 12 V.P. Lukin and B.V. Fortes 
 

 
 

 
 

 
 

FIG. 1. The Strehl factor vs the generalized parameter ντ/R. Hots a–f: 1) results of calculations based on formula (18),  
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, 3) results of calculations based on formula (9), 4) results of 

calculations of St′(τ) based on formula (19), and 5) results of calculations of St′′(τ) based on formula (20). 
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TABLE II. 
 

Inner scale of turbulence 5.92κm, m 0.03 0.01 0.003

Fluctuations of the optical path 

difference σ
Δθ

2 , μm 

 

0.017 
 

0.019
 

0.020

 
TABLE III. 
 
Path length L, m 1000 3000 6000 10000 
Fluctuations of the optical 

path difference σ
Δθ

2 , μm 

 

0.0192 
 

0.0256 
 

0.0299
 

0.0346

 
Thus, the results of our calculations confirm once 

again the conclusions made in Refs. 5–7 and prove the 
effectiveness of "two–color" adaptive imaging. In addition, 
they show the possibilites of improving the dynamic 
characteristics of such systems. 
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