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Accuracy of compensation is estimated for the wave–front distortions using a 
solid adaptive mirror with three response functions. Some recommendations on the 
choice of parameters of the considered response functions are given which allow one to 
improve the efficiency of the adaptive optical system functioning. 

 
The efficiency of adaptive optical systems (AOS) is 

governed by a variety of factors one of which is the 
accuracy of compensation for phase distortions by an 
actuator of the system, i.e., an adaptive mirror. In this 
case the attainment of a required quality of an optical 
system depends on a spatiotemporal structure of the phase 
distortions to be compensated and a bandwidth of actual 
deformations of the adaptive mirror surface. In this 
connection the development of the theory of adaptive 
mirrors is an important problem. 

Vast literature material is devoted to different 
aspects of constructing adaptive mirrors.1–4 The most 
important of them is the choice of a type and parameters 
of the response function of a solid deformable adaptive 
mirror since it is closely related to the problem of correct 
approximation of a wave front and, consequently, the 
possibility of selecting minimum number of independent 
channels of mirror control required for reaching the 
desired accuracy of correction. 

The goal of this paper is to find the dependence of 
the error of phase distortions approximation with a solid 
deformable adaptive mirror on statistical characteristics of 
wave–front fluctuations and parameters of different 
response functions. 

In the calculations it was assumed that the errors in 
the wave–front approximation dominated over the errors 
of measurements and dynamic errors of tracking and 
therefore they are in fact the errors of compensation for 
the wave–front distortions with an adaptive mirror. 

The distribution of the adaptive–mirror actuators is 
assumed to be within the aperture of the diameter D, at 
the nodes of a square grid with a step ρ = D/10. It 
should be noted that the choice of geometry of the 
actuator positions is an important and complicated 
problem and is not considered in this paper. The proposed 
distribution of actuators can be supported by the fact that 
the use of an adaptive mirror with a "square–nest" 
packing of actuators, in contrast to, e.g., a hexagonal 
one, requires simpler algorithms for data processing and 
control and, hence, allows one to simplify the 
construction of the wave–front sensors as well as of 
special calculators of an AOS and, therefore, of the entire 
system. 

Three types of response functions of an adaptive 
mirror are studied: 

– a pyramidal 
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where r = {x, y} is the radius–vector in the mirror plane, xi 

and yi are the coordinates of the ith actuator; 

– Gaussian 
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where S0 is the radius of a deformed surface; 

– and a function of the type 
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below called "anisotropic". 

Let the distribution of a light wave phase incident 
onto an adaptive mirror be Φ(r). Then applying a single 
control action to the ith actuator the correction in the plane 
of coordinates r is accomplished which is determined by the 
response function of this actuator f

i(r). For a linear mirror, 

when the control action is applied to all of the actuators the 
resulting function of the phase correction is  

 

Φ
∼
(r) = ∑

i=1

N

 
 ai fi(r) , (1) 

 
where a

i is the amplitude of a signal at the ith actuator 

control. 
Then the phase distribution in the reflected wave, i.e., 

the error of compensation, can be defined as  
 

ΔΦ(r) = Φ(r) – Φ
∼
(r) . (2) 

 
For the best system of response functions the rms error of 
the phase approximation Φ(r) over the aperture S should be 
minimum, i.e., it is necessary to satisfy the condition 
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Since the wave–front distortions are often described 

by a set of known phase distributions, in particular, 
Zernike polynomials,5 first the quality of functioning of 
the adaptive mirror with different response functions has 
been studied in statistical correction of the phase 
distortions represented by Zernike polynomials. For this 
purpose the problem of the best, from the rms viewpoint, 
approximation of the first four Zernike polynomials Z

j(r)  

was solved. The error of approximation was calculated 
using numerical methods by the formula 
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The results of calculating the correction errors of the first four 
Zernike polynomials εj using an adaptive mirror with the 

above–considered response functions are listed in Table I (for 
a Gaussian and "anisotropic" response functions the values of 
ε
j were calculated as a function of the ratio of the radius of 

surface deformation S0 to the distance ρ between actuators). 

 
TABLE I. 

 

 Error of correction εj 

Type of Zernike  Pyramidal  Gaussian response function Anisotropic response function
polynomial response  S0/ρ S0/ρ 

 function 0.4  0.5  0.6  0.7  0.4  0.5  0.6  0.7  
Tilt 0.15 0.45 0.24 0.10 0.38 0.25 0.13 0.42 0.80 
Defocusing 0.32 1.0  0.50 0.25 0.70 0.51 0.28 0.81 1.31 
Astigmatism 0.25 0.64 0.36 0.15 0.48 0.38 0.20 0.55 0.83 
Coma 0.29 0.8  0.44 0.19 0.56 0.48 0.24 0.67 0.96 

 
The quality of approximation of several types of wave 

fronts (plane, slant, and spherical) with the Gaussian and 
"anisotropic" response functions vs the ratio S0/ρ was also 

studied using relation (3). Depicted in Fig. 1 are the plots 
of approximation errors ε of the results of wave fronts of 
the Gaussian (solid lines) and "anisotropic" (dashed lines) 
response functions vs the ratio S0/ρ. 

 

 
 

FIG. 1. 
 

As can be seen from the analysis of this figure, the 
errors of approximation when S0/ρ < 0.6 are smaller for 

"anisotropic" response function and when S0/ρ > 0.6 for a 

Gaussian one. Moreover it is possible to conclude that the 
minimum error of approximation of the slant and spherical 
wave fronts for the Gaussian response function is for 
S0/ρ = 0.6 and that for the "anisotropic" response function 

– for S0/ρ = 0.5. In the general case the Gaussian response 

function enables one to obtain minimum error of 
approximation. 

Under real conditions the wave front of a light wave 
passed through the atmosphere is a random field since it is 
affected by different random factors, e.g., atmospheric 
turbulence, therefore, the approximation of such a field  

with the help of a limited number of Zernike polynomials or 
some other system of orthogonal functions does not provide 
an adequate profile of an adaptive mirror. Therefore it is 
also expedient to elucidate the ability of the considered 
response functions of the corrector to compensate for 
random phase distortions. Since in this case we deal with an 
infinity of random functions and it is necessary to 
compensate for different distortions, a statistical approach 
must be used in the analysis. 

In the studies the adaptive mirror is assumed to be a 
filter of spatial frequencies.2,4 In this case the residual phase 
error of correction is accounted for by a limited bandwidth 
of the transmission of this filter and has the form 
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Then the variance of the residual phase error can be 

found by integrating over spatial frequencies  
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where Φ(κ) is the spectral density of phase fluctuations, 
f
κ
(κ) is the Fourier transform of the response function, and κ 

is the vector of spatial frequencies. 
Equation (5) was integrated using numerical methods 

for a plane wave where spectral density of fluctuations 
caused by wave propagation in a turbulent atmosphere is6 

 
Φ(k) ≈ 0.123 r0

–5/3k–11/3 , 

 
where r0 is the radius of Fried coherence. 
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Based on the results of integration the following 
relations for variance of the residual phase error were 
derived: 

– for a pyramidal response function  
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where J0(κρ) and J2(κρ) are the Bessel functions of the 

corresponding order; 
– for a Gaussian response function  
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– for an "anisotropic" response function  
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The values of the coefficients α and β for different ratios 
S0/ρ are given in Table II. 

 
TABLE II. 
 

S0/ρ 0.4 0.5 0.6 0.7 

α 1.78 1.11 0.54 0.70 
β 2.01 0.86 0.96 1.06 

 
Typical family of curves describing variances of the 

residual phase error as a function of the relation (ρ/r0)
5/3 is 

shown in Fig. 2. Solid lines are for a Gaussian response 
function of the adaptive mirror, dashed lines stand for an 
"anisotropic" function and a dashed–dotted line is for a 
pyramidal one. It can be seen that for S0/ρ = 0.5 the 

"anisotropic" and for S0/ρ = 0.6 the Gaussian response 

functions enable one to approximate a random wave front 
more accurately than the pyramidal. 

 

 
 

FIG. 2. 
 

It should also be noted that the control with the help 
of an adaptive mirror and, hence, the quality of correction 
of the wave–front distortions depend on the degree of 
mutual effect of actuators working at different portions of  

the corrector. If the interference is significant, the system 
turns out to have severe cross relations and the loss of 
convergence of the iteration process in one channel 
inevitably influences the rest channels what naturally leads 
to worsening of the spatial resolution of the correction 
process with an adaptive mirror. When the interference of 
actuators is insignificant the correction is more stable 
therefore there is a real possibility of performing a parallel 
control of all the actuators and reaching the required 
quality of correction of wave–front distortions. Following 
Ref. 7 we define the coefficient of relation between the 
channels of the adaptive mirror C

q
 as the ratio of a signal of 

error in a given channel caused by displacements of a 
neighbor actuator to a signal of the error produced by a 
comparable in magnitude displacement in the channel under 
study 

 

Cρ = exp [ ]1
2 (ρ/S0)

2  . (6) 

 
Then for a Gaussian response function for S0/ρ = 0.6 the 

coefficient of cross relation is Cρ = 0.24 and for an 
"anisotropic" one Cρ = 0.14 for S0/ρ = 0.5. 

Thus, in constructing the adaptive mirrors it is 
necessary to take into account the fact that the maximum 
accuracy of approximation of different wave–front 
distortions is provided with the Gaussian response function 
of the corrector with the ratio of the radius of deformation 
of the surface portion S0 to the distance between the 

actuators ρ equal to 0.6. However, the "anisotropic" 
response function with the ratio S0/ρ = 0.5 enables one to 

obtain a system with weaker cross relations (overlapping of 
action of individual actuators decreases by approximately 
40%) and to increase stability of the correction system 
functioning accompanied only by insignificant decrease of 
the accuracy (by 25% on the average) of different wave–
front approximations compared to the Gaussian one for 
S0/ρ = 0.6.  

In conclusion it should be noted that despite of the fact 
that the results of this paper were obtained by mathematical 
simulations of functioning of a solid adaptive mirror with 
different response functions which is naturally characterized 
by some limitations and simplifications and taking into 
account those complications which can arise in practice of 
adaptive mirrors engineering with the required types of 
response functions I think that the results presented here can 
be useful for designers of adaptive mirrors and specialists in 
the field of developing adaptive optical systems. 
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