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The point spread function (PSF) for a ground–based telescope is calculated for 
two types of wave–front correctors, i.e., deformable and segmented mirrors. The 
deformable mirror is assumed to be a thin square plate fixed at its center and 
deformed with a system of lateral forces applied to 20 points. The segmented corrector 
is a set of square segments with three degrees of freedom, the number of elements 
varies from 1 to 16. The wave–front distortions are of the Kolmogorov spectrum and 
are considered to be known for each random realization. It is shown that the PSF 
calculated for a 9–element segmented corrector (27 degrees of freedom) is close to 
that obtained for the deformable mirror with 27 degrees of freedom. 

 

INTRODUCTION 

 

The problem of compensation for atmospheric 
distortions of a beam wave front has been studied 
sufficiently long. The first papers on this subject were 
published in the mid–1960s, Ref. 1. At that time, however, 
the engineering base gaves no way for designing the 
efficient devices for compensating for atmospheric 
distortions. In recent years much progress has been reached 
in developing wave–front distortion meters and correctors 
and then fitting the optical facilities operating under 
atmospheric distortions with these devices.2–5 In this 
connection an increased interest of researchers is observed to 
the theoretical works concerning with selection of an optical 
design and configuration of the wave–front corrections.6–9 

There are two major classes of wave–front correctors 
such as deformable and segmented mirrors. The efficiency of 
a segmented mirror with segments of hexagonal shape was 
considered in Ref. 11. As shown in this paper, for the 
resolution of the ground–based telescope to be close to a 
diffraction limit such a segment needs to be only three 
Fried's radii in size.6 Described in Ref. 10 is a flexible 
corrector with different functions of response as well as the 
formula for estimating variance of residual wave–front 
distortions. However, the system's PSF was not found, and 
the functions of response were not determined for a real 
flexible plate. In Ref. 12, the mirror–response functions 
were calculated while the residual wave–front distortions 
were not calculated. 

Thus the available literature does not contain the data 
which could provide for a direct comparison between the 
efficiencies of flexible and segmented wave–front correctors 
for compensating for turbulence–induced distortions of an 
image. Such a comparison has previously been done in the 
problem of compensation for distortions occurring at 
thermal blooming of a high–power beam along a vertical 
path.11 We used a model of a segmented mirror with 
hexagonal elements and compared its efficiency with that of 
a low–order aberration correction, i.e., approximated a 
deformable mirror with a modal corrector. This paper 
concerns the segmented corrector with squared elements and 
the model of a flexible square plate which is deformed with 
20 servodrives used as a deformable mirror. The resultant  

PSF of the two systems was compared in the course of 
varying a number of elements of the segmented corrector. 

 
2. MODEL OF AN OPTICAL SYSTEM 

 
In our study we have considered a telescope with a 

square entrance pupil of the cross–size D = 1 m. The point 
spread function was calculated using one of the following 
methods. 

The first method conventionally employed for 
calculating the PSF consists in determining the discrete 
Fourier transform (DFT) of a two–dimensional set of 
complex numbers U(l, m), l, m = 1, ... N (N is the size of 
the set) representing discrete (with a spatial step Δx = Δy) 
distribution of the optical wave complex amplitude U(x, y) 
in the plane of the telescope aperture. The second method 
traditionally used for calculating propagation of paraxial 
beams involves three stages: (1) computation of the DFT of 
the field complex amplitude, (2) multiplying the field 
spatial spectrum by a filtering function related to 
propagation to a distance f, Ref. 13, and (3) calculation of 
the inverse DFT whose result is the distribution of the field 
complex amplitude in the plane z = f. First, in the plane 
z = 0, the complex amplitude U(x, y) is multiplied by a 
complex factor 

 

C(x, y) = exp { }ik
2f (x

2 + y2)  (1) 

 
corresponding to the field focusing on the plane z = f. Here 
k = 2π/λ is the wave number and λ is the radiation 
wavelength. 

The first method was primarily used in calculating the 
PSF without a correction. The second method is convenient 
because of the possibility of varying the scale of intensity 
distribution in the focal plane by changing the focal length 
f. When 

 
f = f

1
 = (Δx)2 N/λ (2) 

 
the intensity distribution I(l, m) over the focal plane 
calculated by the method of spatial frequency filtration 
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(SFF) is practically identical to that calculated by the DFT 
method. When the focal length is 2 f

1
 the intensity 

distribution becomes twice as wide, when f = f
1
/2 it is 

twice as narrow, and so on. In this case only the linear scale 
changes and the angular intensity distribution is kept 
constant. The SFF method is convenient when calculating 
the corrected PSF whose width approaches the diffraction 
limit, and it has therefore become necessary to increase the 
number of points of a calculational grid which fall within 
the effective size of a focal spot. 

The effect of turbulent fluctuations of the refractive 
index of the atmosphere was taken into account in 
approximation of a phase screen positioned in the plane of 
the telescope aperture and distorting only the wave–front 
shape of the initially plane wave. The spectral density of 
phase fluctuations was taken in the form 

 

Fs(k) = 0.489 r
0
–5/3(k2 + k

0
2)–11/6 , (3) 

 
where 
 

r
0
 = (k2

⌡⌠Cn
2(h) dh)–5/6 (4) 

 
is the Fried's coherence radius, κ

0
 = 2π/L

0 
, and L

0
 is the 

outer scale of turbulence. Different estimates of outer scale 
of the turbulence exist: from tens and hundreds of meters to 
tens kilometers. In our calculations L

0
 =1000 m.  

Spatial scales of phase fluctuations satisfying the 
condition 2π/κ < NΔx = G, where N is the dimensionality of 
the calculational grid along the X and Y axes were 
generated by calculating the DFT of a set of read–outs of 
random spectral–amplitude realizations As(κx l , κy m) 

satisfying the condition 
 

<As(κx l , κy m)⏐2> = Fs(κx l , κz m) , (5) 

 
where the angular brackets indicate averaging over a 
statistical ensemble. To take into account the spatial scales 
larger than the dimensionality of the calculational grid G 
we added aberrations calculated as a sum of the first 28 
Zernike polynomials7,8 and the coefficients produced with a 
random–number generator as independent random values 
distributed following the normal distribution law with zero 
mean and the variance  
 

σn
2 = 8π(n + 1) ⌡⌠

0

2π/G

 
 
kdkFs(k) 

Jn
2(kR)

(kR)2  , (6) 

 

where n is the radial power of the corresponding 
polynomial. 
 

3. MODELS OF MIRRORS 
 
Action of the segmented corrector was simulated as 

subtraction of a constant component and linear components 
calculated by the method of least squares, for the rms error 

of residual distortions to be minimum, from the distorted 
wave– front within each element of the corrector. 

The statistical deflection W(x, y) of a flexible mirror 
was described by the equation of the biharmonic type14 

 

D⎝
⎛

⎠
⎞∂4W

∂x4  + 2 
∂4W

∂x2∂y2 + 
∂4W
∂y4  = g (x, y) , (7) 

 
where g (x, y) is the transverse load and D is the 
cylindrical rigidity. For the used mirror with unfastened 
edges the conditions at the contour were given as 
 

D ⎝
⎛

⎠
⎞∂2W

∂n2  + σ 
∂2W
∂τ2

Lj

 = 0, (8) 

 
where ∂/∂n and ∂/∂τ are the derivatives with respect to the 
normal and tangent to the surface, respectively, and σ is the 
Poisson coefficient. The condition at the central hinged 
point is 
 

W = 0, D ⎝
⎛

⎠
⎞∂2W

∂n2  + σ 
∂2W
∂τ2  = 0 . (9) 

 
4. THE RESULTS OF MODELING 

 
The PSF determination was determined for the visible 

spectral range at the wavelength λ = 0.55 μm. The 
coherence radius r

0
 was assumed to have two values: 20 cm 

(Fig. 1a) and 10 cm (Fig. 1b) (D/r
0
 = 5 and 10, 

respectively). The calculations were made for a segmented 
corrector whose number of elements varied between 1 (3 
degrees of freedom) and 16 (48 degrees of freedom) and for 
a deformable corrector (20 degrees of freedom). In each of 
the figures, the angular distance α in seconds of arc is 
plotted on the OX axis, and the radial cross section of the 
PSF normalized to diffraction maximum is plotted on the 
OY axis. The PSF was averaged over random realizations of 
the wave–front distortions whose numbers were 100–300 
for system without a correction and 10–30 with correction 
of the wave–front distortions. Supplementary results are 
listed in Tables I and II. These are the values of the ratio of 
the Strehl's number St to the total width of the PSF at half 
maximum (FWHM) as a function of the number of degrees 
of freedom of the corrector N

c
. The last lines of the tables 

are related to the deformable mirror, and the first lines are 
the uncorrected PSF. 

As follows from the results, the efficiency of 
compensation for distortions with a segmented mirror 
increases proportionally to the number of its elements (the 
number of coordinates under control). In this case 
approximately the same results were obtained for a 
segmented mirror with 27 degrees of freedom and for a 
deformable mirror with 20 degrees of freedom. The 
efficiency of the mirror is likely to be mostly determined by 
the number of coordinates under control and virtually does 
not change when passing from a segmented mirror to a 
deformable one. 
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FIG. 1. PSF of an adaptive telescope vs a number of degrees of freedom of an active element:1) without correction, 2) 
three degrees of freedom (a segmented mirror and 1 element), 3) 12 degrees of freedom (a segmented mirror and 4 
elements), 4) 27 degrees of freedom (a segmented mirror and 9 elements), 5) 48 degrees of freedom (a segmented mirror 
and 16 elements), 6) 20 degree of freedom (a deformable corrector and 20 servodrives). 
a) r

0
 = 20 cm and b) r

0
 = 10 cm. 

 
TABLE I. 
 

 

N
c 

 

 

St 
 

FWHM 

 

0 
3 
12 
27 
48 
20 
 

 

0.03 
0.14 
0.45 
0.67 
0.75 
0.55 

 

0.50′′ 
0.14′′ 
0.10′′ 
0.10′′ 
0.10′′ 
0.10′′ 

 
 

TABLE II. 
 

 

N
c
 

 

St 

 

FWHM 
 

 

0 
3 
12 
27 
48 
20 
 

 

0.008 
0.017 
0.09 
0.31 
0.46 
0.15 

 

1.1′′ 
0.64′′ 
0.11′′ 
0.10′′ 
0.10′′ 
0.11′′ 
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