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The paper describes the results of analytical solutions of the Fresnel diffraction problem 
obtained for the general case of a sector aperture and, as a consequence, for the case of the angular 
area representing the part of the infinite plane. The results of the calculations of diffraction field 
spatial structure, carried out with the use of the found solutions are presented for some practically 
important situations. 

 

 

Introduction 
 
The Fresnel diffraction, described by the square 

approximation of the general Kirchhoff formula and 
confirmed by numerous experiments refers to the 
classical problems.1 As is  known the diffraction field 
in the Fresnel zone is reduced to the integral over the 
aperture area with a fast-varying integrand. 
Depending on the aperture shape, such integrals are 
rarely calculated explicitly. At the same time, at 
large values of phase parameter, the direct numerical 
methods become here useless. In such cases their 
asymptotic estimate is used. However, the asymptotic 
methods have their limits as well. Therefore, a search 
for analytical solutions for the Fresnel diffraction 
from the areas of various configurations is of great 
interest. 

In the field of optics such solutions are necessary 
for obtaining three-dimensional light distribution 
near the focus, that is especially important for 
estimating the magnitude of allowance in the 
required position of plane of systems, forming the 
image. In the microwave part of radiowaves they are 
also necessary for analysis of spatial field structure 
from different diffraction systems (minimizing 
screens, complex terrain of area: mountains, hills, 
artificial buildings, and so on). 

In spite of the fact that the diffraction problem 
in the Fresnel formulation of the problem has a long-
term history, its analytical solutions were found  
only for apertures of two configurations: rectangular  
and round. Both solutions were obtained by Lommel  
in 1885 and 1886 (Refs. 2 and 3). Apertures of the 
sector shape have not deserved such attention, 
although the interest to them in the microwave part 
of radiowaves became much greater. 

Sector apertures are of interest also due to the 
analytical generality of the solution of the problem, 
which can serve a basis for constructing a series of 
solutions for diffraction from other angular and 
segment areas, where the analytical solutions are 
lacking. 

Diffraction field  
from sector aperture 

 

In the case of a spherical wave incident from a 
point source on the aperture plane of radius R and 
the angle ϕ it is reasonable to select the polar 
coordinates ρ, ϕ with the center coinciding with the 
sector aperture center (Fig. 1). 

In fact, the problem is in deriving an analytical 
expression for a multiplier of diffraction extinction 
Φ = W/W0, where W is the diffraction field of the 
aperture, and W0 = exp[(i2πr0)/λ]/r0 is the field of a 
direct unperturbed wave at an observation point 
behind the aperture at a distance r0 from the source; 
λ is the wavelength. 

The sought function Φ, depending on whether 
the beam passes through the aperture or beyond it, is 
found as a sum or difference of results of integration 
over two adjacent constituent sectors when the beam 

passes along their common edge (Fig. 1): 
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Here 1/ ,n R b=  0 0 1/n b= ρ  are relative values of 

the sector radii and the point of the beam passage in 

the Fresnel zones, where 1 1 0 1 0( – )b r r r r= λ⎡ ⎤⎣ ⎦  is the 

radius of the first Fresnel zone in the plane of the 
aperture, r1 is the distance from the aperture to the 
source; u = ρ/R is the integration variable relative to 
the sector radius magnitude. 
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Fig. 1. Geometry of the problem and spatial structure of the diffraction field (multiplier of the diffraction extinction Φ) for 
the sector aperture with the radius R = 10.95λ and the angle ϕ = 2π/3. Distances from the aperture to the source r1 = 300λ, 
up to the observation planes r2 = 180λ, 200λ, and 230λ. Every curve corresponds to a definite distance from the central axis: 
p0 = 10λ, 6λ, and 2λ. 
 

As a result of labor-consuming mathematical 
procedures with the use of properties of incomplete 
cylindrical functions,4 which were not given here in 
detail, for Eq. (2) the following analytical expression 
was derived 
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Here, by analogy with the Lommel task on the 
circle,3 the functions are introduced having an 
external similarity with the Lommel functions6: 
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where E
ν

–
(ϕ, p) are incomplete cylindrical functions in 

the Poisson form4,5 having the integral representation 
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and the representation in the form of power series 
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Besides, F(v) in Eq. (3) is the known Fresnel 
integral6 with parameters 
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where Γ(ν + 1/2) is the gamma-function with the 
natural values ν; 02 .p n n= π  

All the series, appearing in Eq. (3), are 
absolutely convergent, but suitable for calculations at 
n0 ≤ n, i.e., in the observation plane within the limits 
of the circle near the axis with the radius of the 
diffraction sector hole. The obtained solution is valid 
for arbitrary values of the radius and the sector 
aperture angle. 

One of special cases, confirming the validation 
of the obtained solution, is the problem of diffraction 
from a circular aperture. In this case at ϕ = 2π the 
incomplete cylindrical functions in the Poisson form (5) 
become the Bessel functions J

ν
(p) (Ref. 6), the 

introduced functions VS

–(ϕ, p) (4) are transformed in 
the Lommel functions VS(n, n0) (Ref. 6), the second 
term in Eq. (3) vanishes because of v3 = 0, and the 
third term becomes a unity, because the multiplier in 
square brackets at ϕ = 2π is simply a series expansion 
of the function exp(–iπn0). Hence, we come to the 
known Lommel solution1,3: 
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is the Lommel function. 
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Diffraction field from the angular area 
 
The solution (3) due to its generality can be 

used for constructing a series of solutions for 
diffraction from other angular and segment regions 
where the analytical solutions are lacking. One of 
such regions is the part of an infinite plane limited 
by a definite angle. It is evident that such a region is 
a special case of the sector with infinitely high value 
of its radius. Therefore, to find the analytical 
expression for the multiplier of the diffraction 
extinction Φ, the limiting transition n → ∞ was used. 
It should be noted that when executing the analytical 
procedures at n → ∞, the general term appears: 
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which, at the corresponding upper limit converts the 
initial integral (2) into a divergent one. To overcome 
this analytical difficulty, we used the known method, 
which is often employed in the problems of radiowaves 
propagation.7,8 The main point of the method lies in 
the fact that a small positive part (i.e., k + iα) is 
assigned to the wave number k = 2π/λ, which corresponds 

to the presence of insignificant conductance of the 

medium. The quantity k + iα, entering implicitly into 
the phase part of the first multiplier of Eq. (6), leads 
to the occurrence of the decreasing amplitude part, 
which vanishes at putting the upper limit in Eq. (6). 
By making subsequent analytical operations for the 

multiplier of the diffraction extinction, the following 
expression was obtained: 
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where 0 0 12( ),v b= ρ  all other parameters have the 

same values that in the case of the sector aperture. 
Figure 2 shows the axes of relative coordinates αõ = õ/b1 
and αy = y/b1, which later will be necessary for 
presenting the results of calculations. 

The obtained solution differs from Eq. (3): the 
first term disappears (contributions of rounded parts 
of sector region and some triangular regions). The 
formula (7) is valid in the entire plane of observation, 
and, in contrast to Eq. (3), is convenient for 
calculations without limitations throughout the 
plane. The calculation of the diffraction field, as well 
as of the sector screen, is a result of integration over 
two adjacent angular regions (Fig. 2). 

Equation (7) is derived for the angular region with 
an arbitrary value of the aperture, therefore at ϕ = π 
it results in the known solution for a half-plane7,9: 
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Fig. 2. Geometry of the problem for the angular region. 

 

Results of calculations 
 

1. Spatial pattern of the diffraction field from 
the sector aperture 

 
Using the derived solution, we have obtained the 

patterns of space field structure for sector apertures 
with arbitrary values of radii and angles. As an 
example, Fig. 1 shows the spatial field structure for 
the sector aperture, being symmetric relative to the 
axis x and having the above-mentioned parameters: 
R = 10.95λ and ϕ = 2π/3 (angular aperture). The 
field structure is presented in the form of the 
distribution Φ in three planes removed from the 
aperture plane at the distances r2 = 180, 200, and 
230λ. The distance from the point source to the 
aperture plane is equal to r1 = 300λ. In every plane 
the values of Φ, corresponding to some definite value 
of the angular coordinate ϕ0, are plotted radially 
from the center in units given in the figure. Every 
curve corresponds to definite value of ρ0 (i.e., 
removal from the center). Curves of the distribution 
Φ have asymmetry relative to the axis y, that is 
clear, because the aperture itself has the same 
asymmetry. All values of parameters and proportions 
between them were selected for the model experiments 

when developing the protective diffraction screens in 
the microwave range of radiowaves. 

 

2. Spatial pattern of diffraction field  
from a weakening screen 

 
In practice of microwave radio range, of interest 

is the screen in the form of a semicircle with the 
radius equal to the radius of the first Fresnel zone in 
the screen plane relative to the points of radiation 
and observation, i.e., R = b1. Such a screen at the 
observation point at the central axis, passing through 

the semicircle center, attenuates the field up to zero. 
Naturally, of interest is the field distribution near 

these points. Figure 3 shows for the screen in the  

form of semicircle with R = 10.95λ the results of 
calculations of the field diffraction pattern close to 
the point of its minimal level, obtained with the  
use of the Babinet principle1,7 and the calculated 
solution (3) for the sector aperture. 
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Fig. 3. Spatial patterns of the field (multiplier of the diffraction extinction Φ) for a weakening screen in the form of a 
semicircle with the radius R = 10.95λ. Distances from the aperture up to the source r1 = 300λ, up to the observation planes 
r2 = 150λ, 180λ, 200λ, and 230λ. Every curve corresponds to the definite distance from the central axis: ρ0 = λ; 2λ; 3λ. 

 
For the screen with R = 10.95λ the calculated 

point of the field minimal level on the central axis is 
at the distance r2 = 200λ from the screen plane, 
therefore, the plane, in which this point is located, is 
principal. The field structure is given in the form of 
the space pattern of Φ in the principal plane at a 
distance of r2 = 200λ and in three other planes 
located at distances r2 = 150, 180, and 230λ from the 
aperture plane. In each plane, the values of Φ, 
corresponding to some definite value of the angular 
coordinate ϕ0, are plotted radially from the center in 
units given in the figure. Because the screen is of the 
weakening type and the field levels reach very small 
values, the logarithmic units dB were selected in this 
case. Each curve corresponds to certain remoteness ρ0 
of the observation point from the center. 

As it is seen from the field diffraction patterns, 
the degree of the field weakening decreases with 
greater distance from the central point, both along 
the axis and in the observation plane itself. In the 
principal plane (r2 = 200λ) at a small removal from 
the center ρ0 = λ, the weakening reaches more than 
–60 dB while at p0 = 3λ the weakening of the order 
of –20 dB is observed. The same can be observed at 
shifting along the axis. The diffraction pattern has a 
certain asymmetry relative to the vertical axis, which 
becomes stronger at a removal from the principal 
weakening plane. In this case, the direction of 
asymmetry depends on the position of the observation 
point relative to the principal weakening plane. 

 

3. Model of the angular region for calculating 
the diffraction field at the closed paths 
 

One of the main factors, determining the local 
level of the field and its space distribution at closed 
paths, is the influence of transverse profiles of 
obstacles on the field formation. When calculating 
radio lines, ground-based obstacles are usually 
approximated by a half-plane. However, the transverse 

form of real obstacles often greatly differs from the 
rectangular form, therefore, the calculations, based 
on the above approximation, often are not in agreement 
with the experiment. In the paper by Bachynski and 
Kingsmill10 the calculated data are given for the 
profiles of obstacles in the form of angular regions, 
which are in good agreement with the experiment for 
angles close to 180°. 

Based on the assumption that the natural obstacles 
(mountains, hills) by their profiles are close to the 
angular regions, the obtained analytical expression (7) 
has made it possible to consider the angular region as 
an approximating model of natural obstacles. 

Figure 4 shows the results of calculations and 
experimental data on the multiplier of diffraction 
extinction for the model of angular region. The 
spatial field distribution is determined by parameters 
αõ = õ/b1 and αy = y/b1, where b1 is the radius of 
the first Fresnel zone. 

The plots (Fig. 4a) reflect the situation, when 
the left edge of the obstacle coincides with the 
horizontal axis. Dashed curve corresponds to the field 
distribution behind the half-plane. As is seen, the 
field distributions behind the angular obstacles and 
the half-plane differ greatly, that results in 
significant errors introduced in the calculations by 
the half-plane approximation. 

Figure 4b shows a comparison of the results with 
the experiment and with the results by Bachynski 
and Kingsmill (Ref. 10). The lines correspond to the 
results of Bachynski and Kingsmill under the 

conditions: a – for angular apertures close to 180°;  
b – for angular apertures, which differ greatly from 
180°. Dashed lines relate to the model in the form of 
half-plane (hp), and solid curves relate to the 
calculations by Eq. (7). The comparison has shown a 
marked difference in the results obtained by different 

methods. At the same time, the experimental data 
(small circles) are in good agreement with the 
calculations by Eq. (7). 
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Fig. 4. Spatial distribution of the diffraction field from the 
angular region as compared with the model of Bachynski 
and Kingsmill and experimental data. 

 

Conclusion 
 
1. We have obtained the analytical solution of 

the known problem of the Fresnel diffraction on the 
sector aperture through incomplete cylindrical 
functions in the Poisson form, which is valid at all 
points of observation near the axis passing through 
the sector center, but is convenient for calculations  
 

only in the circular region with radius of a 
diffracting aperture. The calculation results of spatial 
structure of diffraction field from the sector aperture 
(Fig. 1) and from the protective screen in the form of 
semicircle (Fig. 2) are presented. 

2. Due to great generality of the solution of the 
diffraction problem for the sector, the analytical 
solution for angular region has also been obtained, 
which is valid and convenient to be calculated 
without limitation in the entire observation plane. 
The results of calculations have shown a strong 
influence of the obstacle profiles on the spatial field 
structure and the necessity of more precise accounting 
for of this influence, for which purpose the model of 
angular region and obtained solution (7) of the 
diffraction problem can be proposed. 
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