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The problem of the optical radiation propagation through a medium with 

parabolic distribution of the imaginary part of dielectric constant has been solved 
analytically by the diffraction rays method in the paraxial approximation.  It is 
shown that the diffraction rays method allows energy flow lines to be traced for 
the known arbitrary distribution of the dielectric constant of the medium taking 
into account the diffraction and refraction on an inhomogeneous absorption profile.  
The geometrical optics approximation for the given media is considered.  It is 
found that the optical ray trajectory in the medium with inhomogeneous 
absorptance depends not only on the complex dielectric constant distribution, but 
also on the wavefront phase distribution.  This  means that the rays outgoing from 
one point of space in the same directions but belonging to wavefronts with different 
curvature radii in the vicinity of the given point will propagate along different 
trajectories.  It is the fundamental difference between the geometric optics of 
homogeneously and inhomogeneously absorbing media. 

 
Traditionally, investigators use the methods based 

on the introduction of complex ray trajectories when 
solving the problems of the radiation propagation 
through absorbing inhomogeneous media.1$4  
Phenomenological tracing of rays in real space is 
described in Ref. 5 where the radiation propagation 
through a strongly absorbing inhomogeneous media is 
related to the amplitude trajectories with minimum 
extinction.  However, the concept of the amplitude 
trajectory is based primarily on physical considerations 
rather than on rigorous derivations and therefore is of 
heuristic nature. 

This paper describes the rigorous solution of the 
problem in the paraxial approximation based on 
tracing of diffraction rays in real space.  The 
diffraction rays mean the lines perpendicular at each 
point to the wavefront phase, i.e., the tangent to the 
given line coincides with the direction of the 
Poynting vector. 

1. The optical radiation propagation through 
strongly absorbing inhomogeneous media is considered 
on the basis of the parabolic wave equation 

 

2ik 
∂E
∂z  + ∇2

⊥ E + k2 Δε∼(z, R) E(z, R) = 0, (1) 

 

where k is the wave number and Δ~ε(z, R) is the 
perturbation of the complex dielectric constant of the 

medium: Δε∼(z, R) = ε(z, R) + iσ(z, R).  The field is 

defined as E(z, R) = A(z, R) eikϕ(z,R), where A(z, R) 
and ϕ(z, R) are the real amplitude and the eikonal of 
the field. It can be demonstrated6 that Eq. (1) is 
identical to the system of equations 
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From this system of equations in the geometrical 
optics approximation (k → ∞) the following equation 
can be derived6: 
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An analysis of this equation demonstrates that a ray 
trajectory in the medium with the inhomogeneous 
absorption coefficient depends not only on the 
distribution of the complex dielectric constant, but also 
on the wavefront phase distribution.  That is, the rays, 
emerged from one spatial point in the same directions 
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but belonging to the wavefronts with different 
curvature radii in the vicinity of the given point will 
propagate along different trajectories.  This is the 
fundamental difference of geometrical optics of 
inhomogeneously absorbing media from geometrical 
optics of the media with homogeneous absorption. 

This fact can be illustrated by an example of the 
exact analytical solution for the parabolic profile of  
 

perturbation of the complex dielectric constant of the 
medium. 

Now we consider the case in which the medium is 
strongly absorbing, i.e., ε(z, R) << σ(z, R) and the real 
part of perturbation of the dielectric constant can be 
neglected.  In this case, for parabolic absorption 
distribution (σ(z, R) = σ2R2) the derived system of 
equations (2) has the automodel solution 
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where g(z) is the beam broadening, for which from 
Eq. (2) it  follows that 

 

d2g/dz2 = g$3 (1/ka2
0 + σ2 λ(z))2, (5) 

 

where λ(z) = ⌡⌠
0

z

 g2(z′) dz′. 

The obtained equation is nonlinear even for the 
limit of geometrical optics, although when considering 
the refraction effects only for the real part of 
perturbation of the dielectric constant of the medium, 
the equation for the function g(z) is linear.7  However, 
for the function f(z) = g2(z) from Eq. (5) the linear 
equation of the fourth order follows 

 

d4f

dz4 = 4 σ2
2 f(z). (6) 

 

Because the four independent initial conditions are 
required for obtaining the general solution of the 
fourth-order equation, the  knowledge of only initial 
point and the angle of ray tilt is insufficient.  The two 
additional initial conditions may be taken from the 
form of the second and third derivatives of function 
f(z), which follow from Eq. (5): 
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d3f

dz3 = 4 σ2 [L
$1
D  + σ2 λ(z)],  

 

where, in its turn, 
df

dz = 2g 
dg

dz and f(z) = g2(z).  

Moreover, all the derivatives of function f(z) are taken 
in the initial plane z = 0 and have the forms 

 

f0 = 1, f ′0 = 2F 
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$2 + L$2
D ), f ′′′0  = 4 σ2 L

$1
D . 

 

The solution of Eq. (6) can be represented as 
 

f(z) = f1(z$) + Lσ F 
$1
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where F0 is the focal length of the initial wavefront 

phase, Lσ = (2/σ2)
1/2,    LD = ka2

0,    z
$ = z/Lσ, 

 

f1(z) = 

1
2 (cosh 2z$ + cos2z$),  f2(z) = 

1
2 (sinh 2z$ + sin2z$), 

f3(z) = 

1
2 (cosh 2z$ $ cos2z$),   f4(z) = 

1
2 (sinh 2z$ $ sin2z$). 

 

It should be noted that for the parabolic 
absorption distribution the derived solution is exact for 
the system of equations (2) and hence it is exact for the 
initial parabolic wave equation (1) as well. 

The solution (7) confirms the above-indicated fact 
that even in the approximation of geometrical optics 
the two initial conditions (the starting point and the 
initial tilt) do not determine uniquely the ray 
trajectory, because in the third term of solution (7) 
after the limit (LD → ∞) is taken, the dependence on 

the initial wavefront curvature F 
$2
0  remains. 

From the solution of Eq. (7) it also follows that in 
the approximation of geometrical optics (LD → ∞) for 
a plane wave (F0 → ∞) the radiation intensity along 
the axial ray decreases significantly, although the 
absorption along this ray is absent.  This decrease of 
the radiation intensity is explained by the beam 
broadening on the inhomogeneous absorption profile.  
Thus, the rays are bent not only on the real part, but 
also on the imaginary part of the dielectric constant of 
the medium.8 

2. Now we consider the radiation propagation 
through the medium with the absorption distribution 
different from the parabolic one.  The real part of 
dielectric constant of the medium is neglected as in the 
derivation of the automodel solution.  In addition, we 
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restrict ourselves to the case of a two-dimensional (slit) 
beam.  The system of equations (2) is transformed into 
a form more suitable for numerical realization.  Taking 
into account the absorption 

 

τ(z, R(R0, z)) = k ⌡⌠
0

z

 σ(z′, R(R0, z′)) dz′ , 

 

the expression for variation of the field amplitude along 
a given ray has the form 
 

 

A(z, R(R0, z)) = 
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g(z)
 e$τ/2. 

 

In what follows that using the expressions A = eχ 

and ∇⊥ ϕ = 
dR
dz  and going to the normalized variables 
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we derive the system of equations 
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where β = Lσ/LD. 
Based on the given system of equations, numerical 

analysis was made of the peculiarities of the optical 
radiation propagation for the Gaussian 

[σ(z, R) = σ2 (1 $ e$R2
)] and the power-law 

[σ(z, R) = σ2 (R/a0)
20] distributions of absorption. 

When the Gaussian beam (with the Gaussian 
initial distribution of the field amplitude 

A0(z, R) = A0 e
$R2/2a2

0) propagates through the 
medium with the Gaussian absorption distribution over 
the beam cross section and the diffraction is small 
(β = 0.01), the ray focusing is observed at the point  

R
$
 = 1/ 2 (Fig. 1).  This point is the point of 

inflection of the field amplitude distribution.  In the 
right-hand side of the first equation of the system, the 
derivatives enter the function containing the field 
amplitude distribution.  So we are able to verify that at 
this point the focusing condition is fulfilled.  However, 
although we observe strong focusing on the 
inhomogeneous absorption profile, at this distance the 

extinction e$τ dominates; therefore, the intensity at the  
 

focusing point is close to zero and consequently the 
intensity distribution is smooth (Fig. 2). 
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FIG. 1. Ray trajectories of the Gaussian beam 
propagating through the medium with the Gaussian 
distribution of inhomogeneous absorption for β�=�0.15. 
 

σ = σ2 (1 $ e$R2
)

σ = σ2 R2

0 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8
W

R

1 2

3

 
 
 

FIG. 2. Radial intensity distribution of the Gaussian 
beam propagating through the medium with the 
Gaussian and parabolic absorption distributions at 
z = 1 for β = 0.01 (1), 0.15 (2), and 1 (3). 
 

One can readily see that the intensity distribution 
remains close to Gaussian.  With the increase of the 
diffraction (with increasing β), focusing gradually 
disappears, because the diffraction becomes a 
suppressing factor. 

Let us consider a medium with a sharp boundary 
of absorption variation.  For example, 
σ(z, R) = σ2(R/a0)20 can be taken, where a0 is the 
Gaussian beam width.  When diffraction is small 
(β = 0.001), the refraction is manifested on the 
inhomogeneous absorption profile.  The rays gradually 
move aside and attenuate rapidly (Fig. 3).  In this case, 
the intensity inside the weak absorption region remains 
unchanged.  As the value of β increases up to 0.01, the 
rays in the vicinity of the sharp boundary of absorption 
variation undergo the diffraction distortions (Fig. 3) 
thereby initiating small spikes of radiation intensity at 
the points of their concentration (Fig. 4).   

As β increases up to 0.15, the diffraction is 
manifested almost instantly.  The rays deviate from the 
boundary with the sharp change of absorption and start 
to focus (Fig. 3).  Gradually, with the increase of the 
propagation distance, strong focusing on the axis is 
observed (Fig. 4), resulting in the intensity increase 
more than twice.9  This effect is unexpected, because 
the diffraction effects on the aperture with such a 
profile are less pronounced.  This is confirmed by the 
numerical solution for the beam diffraction behind an  
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infinitely thin screen, whose optical thickness is equal 
to the propagation channel optical thickness at the 
distance being studied.  Figures 5 and 6 show the 
results indicating that at equal distances the diffraction 
effects behind the screen are less pronounced than in 
the propagation channel. 
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FIG. 3. Ray trajectories of the Gaussian beam 
propagating through the medium with the power-law 
distribution of inhomogeneous absorption σ(z, R) = 
= σ2(R/a0)20 for β = 0.001, 0.01, and 0.15. 
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FIG. 4. Radial intensity distribution of the  Gaussian 
beam propagating through the medium with the 
absorption distribution by the law σ(z, R) = 
= σ2(R/a0)20 at distances up to z = 1.6. 

 
This behavior of rays propagated through the 

medium with the sharp boundary of absorption change 
as, for example, σ(z, R) = σ2

 (R/a0)20 can be 
explained by a joint effect of diffraction and refraction 
on the inhomogeneous absorption profile.  The 
refraction leads to the deflection of rays from the axis 
toward the region of strong absorption.  The absorption 
results in the appearance of large gradients in the 
intensity distribution, that in their turn  
 

strengthen the diffraction ray bending.  The bent rays 
fall within the region of strong refraction and the 
process is repeated. 
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FIG. 5. Ray trajectories of the Gaussian beam 
propagating through the field stop of radius a0 for 
β = 0.01 and 0.15. 
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FIG. 6. Radial intensity distribution of the Gaussian 
beam propagating through the field stop of radius a0 
at distances up to z = 1.6. 
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