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An algorithm is proposed for optimization of the parameters of propagation of a 
light beam through a nonlinear medium against the criterion of angular divergence in 
the far diffraction zone. A system of equations is derived for two auxiliary functions 
which can be used for construction of an iterative procedure of search for the optimal 
phase by the method of conditional gradient. To demonstrate the efficiency of the 
algorithm, the problem of compensation for the stationary wind refraction is solved. 

 
Propagation of light beams through the real atmosphere 

is accompanied by diverse effects associated with nonlinear 
refraction, fluctuations of the optical parameters, and so on. 
These effects cause amplitude phase distortions of the beam 
propagated along the path and, as a consequence, its 
additional angular divergence, which is, generally speaking, 
not additive to its diffractional divergence. Studying the 
possibilities of minimization of the beam divergence in the far 
diffraction zone by means of control of the beam phase front 
at the transmitting aperture is of interest for certain problems 
in atmospheric optics. 

The most promising approach seems to be the 
determination of the initial phase profile of the beam in the 
process of numerical solution of the problem of optimization. 
With the use of the gradient methods, which are well 
developed at present, to maximize the radiant power density at 
the object of a given radius.1,2 

The problem of optimal control consists in finding such 
parameters of the system, which ensure the necessary 
conditions of interaction of the beam with the medium. In the 
formulation of the problem of control of the beam parameters, 
at first it is necessary to formulate the quality criterion (the 
goal function), which specifies the aim of such a control. 

The angular divergence in the far diffraction zone can be 
minimized by maximizing the relative fraction of the light 
power concentrated within a given solid angle at a sufficiently 
distant target. The last condition can be conveniently 
formulated as that of maximizing the spectral criterion 
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within which the radiant energy is concentrated. 
Propagation of quasistationary radiation through the moving 
weakly absorbing medium is described by a system of 
equations which is given below in dimensionless form 
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An initial condition is prescribed upon entering the 
nonlinear medium (z = 0) 

 
A(x, y, 0) = A

0
(x, y) exp [iU(x, y)] . (4) 

 
We will find the increment ΔJ

Ω
 to functional (1) due 

to the variation of the initial phase profile ΔU of the 
emitted wave 
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Going over from the spectral to the initial variables, we 
transform Δ J

Ω
 into the form 

 

Δ J
Ω
 = (1/ 2π)3

 2Re ⌡⌠ 
 (ψΔ A)⏐

z=0
 d2r + J

1
 , (6) 

 
where 
 

J
1
 = (1/ 2π)3

 2Re ⌡⌠
0

z
0

 
 dz ⌡⌠ 

 [ ]Δ A
∂ψ
∂z + ψ 

∂A
∂z  d2r , 

 
where r = {x, y} and Ψ(r, z) is some auxiliary function. We 
choose the function Ψ in such a way that the term J

1
 in 

Eq. (5) will vanish. It has been demonstrated in Ref. 3 that 
J

1
 = 0 when the function Ψ(r, z) and the second auxiliary 

function G(r, z) both satisfy the conjugated system of 
equations 
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When spectral criterion (1) is maximized, the 
boundary conditions for functions Ψ and G take the form  
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Thus the increment in the functional ΔJ
X
 is expressed as 

follows: 
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in terms of variation of the field at the radiating aperture 
ΔA(r, 0).  

Equation (10) is used to find the gradient of the 
functional J

Ω
. As was demonstrated in Ref. 3, when the 

phase front of the beam is controlled and its amplitude 
profile is fixed, the (n + 1)th order approximation of phase 
is related to its nth order approximation by the iterative 
procedure 
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where 0 < α < 1 is the size of the gradient step. Direct 
calculation of boundary condition (9) would entail lengthy 
computations. At the same time, it is easy to demonstrate 
that this condition can be reduced to the form 

 

ψ(r) = 1/ 2π⌡⌠
 
 ρ(k)A*(k) exp(ikr) d2k , (11) 

 
which makes it possible to implement the FFT algorithm. 

Below we present some results of numerical simulation 
against the spectral criterion. Calculations were performed 
for beams with the Gaussian amplitude profile propagating  

along the path of length z
0
 = 0.5. The nonlinearity 

parameter R
ν
 was chosen to be equal to – 15, and the 

relation 
 

ρ(k) = exp(–k2/s2) (12) 
 
was used for the function ρ(k) which specifies the spectral 
region of energy concentration (parameter s here varied in 
the course of numerical experiment). 

Calculations demonstrated that the efficiency of the 
algorithm of optimization strongly depends on the value of 
the parameter s. The fraction of radiant energy concentrated 
within a given solid angle and the peak intensity of 
radiation at the target varies in different ways in the course 
of the iterative process. Varying s, the criterion J

Ω
 can be 

increased by 10–15% and the peak intensity at the target –
– by 20–30%. The initial approximation of the beam phase 
and the size of the gradient step α affects insignificantly the 
convergence of the iterative process. 
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