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Resonance excitation of the internal optical field of transparent spherical microparticles under 

irradiation by a train of ultrashort laser pulses has been simulated numerically. It has been 
determined that the incident radiation can be tuned optimally to preset high-Q resonance with a 
particle by varying the pulse ratio in the train with the linear frequency modulation of every pulse in 
the train (chirping). Analytical equations have been derived for calculation of these parameters 
depending on the laser pulse duration and the frequency of the resonance to be excited. 

 

Introduction 
 
Miniature high-sensitivity optical devices (optical 

biosensors,1 polymer optical fibers,2 nanostructure 
semiconductors,3 photon crystals,4 microlaseres5) are 
actively developed in recent years. The main element 
of these devices is an optical microcavity, which 
serves for amplification and controllable conversion 
of optical radiation. Such a cavity is usually 
represented by an optically transparent dielectric 
microparticles of spherical or cylinder form, whose 
dimensions are much larger than the wavelength of 
the working radiation. The operating principle is 
based on excitation of the so-called whispering 
gallery modes (WGMs). 

Whispering gallery modes form a subfamility of 
natural electromagnetic oscillation modes of a cavity. 
They are characterized by a very high Q-factor 
(> 105), narrow spectral profile, rather long lifetimes 
(about nanoseconds), and the high degree of 
localization of the optical field near the cavity surface. 
Just these properties of WGMs have found the utility 
in optical microelectronic devices for frequency 
filtering and amplitude modulation of optical radiation 
and optical connection of elements. The also can be 
used in lasing at new wavelengths due to nonlinear 
effects of stimulated Raman scattering, stimulated 
fluorescence, and harmonic generation. Natural 
frequencies of WGMs are determined by a 

microparticle size and its optical properties. 
As the frequency of an optical wave, incident on 

the particle, coincides with the frequency of one of 
its natural modes, there appears a resonance 
excitation of the internal optical field, and its 
spatiotemporal distribution is fully determined by the 
excited mode field. 

A key point in the increase of the microcavity 
operation efficiency is achievement of the optimal 
regime of WGM excitation by optical radiation, which 
requires a rather accurate tuning to the resonance. It 
is not always possible and convenient to meet this 

requirement at a given cavity geometry by varying 
the frequency of the incident radiation. Application 
of ultrashort laser pulses with pico- and femtosecond 
duration allows the initially wide spectral composition 
of the radiation to be used. Consequently, this can 
facilitate the tuning of selected WGMs to the 
resonance.6 

Earlier, it has been shown theoretically that the 
use of the frequency-pulsed excitation of a spherical 
microcavity by a train of ultrashort laser pulses 
instead of irradiation by single pulses allows the 
control over this process.7 At a properly selected 
relative pulse duration optical fields from every pulse 
inside the particle are in-phasely summed, and it 
becomes possible to excite selectively microparticle 
resonance modes, whose natural frequencies fall 
within the spectral range of radiation. 

This paper proposes a further development of 
this technique from the viewpoint of efficiency of 
resonance excitation of WGMs by varying the 
relative pulse duration in a train in combination with 
linear frequency modulation of every pulse (chirping). 
Variation of the chirping depth leads to redistribution 
of spectral energy inside the radiation profile, and, 
thus, it becomes possible to concentrate energy near 
needed frequency ranges (natural WGM frequencies). 
 

Basic equations 
 

The basic idea of the proposed technique of 
frequency-pulsed modulated optical excitation of a 
spherical microcavity is explained qualitatively in 
Fig. 1. Figure shows three spectral profiles of the 
power density of laser radiation incident on a 
microcavity ⎪S

ω
(ω)⎪2, which correspond to a single 

Gaussian (in time) pulse and a train of ten pulses of 
the same duration with and without liner frequency 
modulation applied to every pulse. 

As is seen, in contrast to the smooth Gaussian 
profile of a single pulse, the spectral profile of a 
train is a function consisting of many localized spikes 
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(lobes), the frequency distance between which is 
constant and determined by the ratio of the time gap 
between the pulses and the relative pulse duration. 
Then we assume that nonresonance excitation of a 
microparticle is realized: ω0 ≠ ωn, where ω0 and ωn are, 
respectively, the frequencies of the incident radiation 
and a selected whispering gallery mode. Then if the 
pulse ratio in the train is selected so that the frequency 
of some side lobe of the spectrum ωj coincides with 
the resonance frequency of the microparticle ωn, then 
the light energy is transferred optimally in this mode 
compared to the case of a single pulse. 
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Fig. 1. Spectral profiles of a single Gaussian pulse (dot-and-
dash curve) and a train of 10 pulses with (dashed curve) and 
without (solid curve) frequency modulation. 

 
The efficiency of this process directly depends  

on the spectral energy contained in the side lobe  
of the spectrum of radiation exciting WGMs. For a 
nonmodulated train of pulses, as follows from Fig. 1, 
the ratio between peaks of spectral intensity at  
the central frequency ⎪S

ω
(ω0)⎪

2 and at the frequency 
of, say, the first lobe ⎪S

ω
(ω1)⎪

2
 is rather large  

and characterized by the value of 
η1 = ⎪S

ω
(ω0)⎪

2/⎪S
ω
(ω1)⎪

2
 > 3.8. If we consider a train 

of chirped pulses with the same relative pulse 
duration, then this duration can be decreased 
significantly, and for the profiles shown in Fig. 1 it is 
already η1 > 1.2. Consequently, in this case, we can 
expect a smoother distribution of peaks of the radiation 
spectral energy and more efficient excitation of the 
microcavity. 

Then we find the functional connection between 
the parameter η and the frequency–time characteristics 
of the radiation incident on the microparticle and, 
first of all, with the parameter of the chirping depth. 
For this purpose, we specify the time profile of every 
pulse in the train by the Gaussian profile with the 
duration tp (at a level of å–1 of intensity maximum): 
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The time dependence of the whole train of Np 
equidistant pulses has the form 
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Here tj = t0 + (j – 1)T, Ò is the pulse period; b is 
the depth parameter of the linear frequency 

modulation, and t0 defines the position of the first 
pulse peak in the train on the time scale. The 
frequency of such radiation within every pulse varies 
in time by the law ω(t) = ω0 + bt/2tp

2
. 

The Fourier transform spectrum of dependence (1) 

describing the spectral profile of radiation is specified 
by the following function: 
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is the envelope of the spectral profile of the whole 

train with the half-width 2
p p2 1 .b tω = π +  

The equation for the spectral intensity of radiation 
follows from Eq. (2) and can be written as  

 
2
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where K = (ω – ω0)T = (ω – ω0)sptp, the parameter 

sp = T/tp defines the relative pulse duration. 
According to Eq. (3), the spectral profile of the train 
looks like a frequency-pulsating function and has 
main peaks arranged equidistantly on the frequency 
axis, which arise upon constructive summation of 
exponents in Eq. (2). The coordinates of these peaks 
can be found from the relation  
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Consequently, the sought ratio of the spectral 
intensity peaks for the first side lobe η1 is determined 
as η1 = exp{–4π2/[sp

2
(1 + b2)]} and increases with the 

increase of the modulation depth b. 
At the same time, the chirping of pulses has a 

negative effect as well, because at the general 
broadening of the spectrum the absolute value of  
the maximum intensity of the lobes decreases 

simultaneously. Actually, from Eq. (3) we obtain  
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This function has a peak for the parameter 
2 2

m 1 0 p2( ) 1b t= ω − ω −  value, which takes the 
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following form when using condition (4) for the 
optimal pulse duration: 

 
1/2

m p(2 ) 1 .b s= π −  (5) 

Thus, at ω = ωn Eq. (4) determines the rule, by 
which the relative pulse duration sp is selected for 
the frequency position of a side peak of the radiation 
spectral intensity to coincide with the frequency of 
the selected resonance mode of the particle ωn, and 
Eq. (5) gives the depth b of frequency modulation of 
the pulses, which is necessary for more efficient 
excitation of this mode. 

 

Numerical example 
 

Let us illustrate the results obtained with an 
example. For this purpose, we consider the laser 
radiation incidence in the form of a train of ten pulses 
(Np = 10) of picosecond duration (tp = 1 ps) with 
λ0 = 800 nm on a transparent spherical water particle 

(complex refractive index ma = na + iκa = 1.33 – i ⋅ 0) 
with the radius a0 = 10 μm. 

The spatial intensity profile of the optical field 
inside such a particle I(rb) can be calculated by the 
Mie theory taking into account the finite width of 
the radiation spectral profile.6,8

 It is characterized by 
the presence of two main peaks located near the 
irradiated and dark hemispheres. The efficiency of 
optical excitation is measured by the so-called factor 
of inhomogeneity of the light field B(rb) = I(rb)/I0 
(where I0 is the peak intensity of the incident 
radiation) calculated for definiteness at the point of 
intensity peak in the rear hemisphere of the particle 
rb. For the selected computational conditions, this 
point corresponds to the spherical coordinates: 
rb = (r, θ, ϕ)⎥b = (0.845; 0.0; 0.0). 

The spectral profile of picosecond radiation is 
rather wide (ωp > 6.3 ⋅ 1012

 Hz) and, in principle, it 
can encompass several resonance modes of the 
particle. This can be seen from Fig. 2, which shows 
the spectral response function of the particle in the 
form of the dependence of B(rb) on the normalized 
frequency detuning Δω– = (ω – ω0)/ω0 near the central 
frequency of radiation ω0. 

The letters in Figure indicate the positions of 
WGM resonance profiles excited in the spatial 
configurations of ÒÅ

m

n  and ÒM
m

n  fields, in which the 
numerical indices correspond to the number n and 
order m of a natural resonance. The higher the 
resonance number and the lower the resonance order, 
the narrower its spectral profile and the higher the 
resonance value of the intensity B(rb) [Ref. 9]. 

It follows from Fig. 2 that at the chosen 

parameters of the numerical experiment, a single pulse 
excited the optical field of the particle nonresonantly, 
since no one natural resonance corresponds to the 
central frequency of the radiation ω0 (Δω– = 0). At the 
same time, at least three resonance modes, namely, 
ÒÅ

3
85, ÒM

2
90, and ÒÅ

4
81, lie near the frequency center of 

the pulse and can be candidates for selective excitation. 
For definiteness, we select the tuning to the natural 
frequency of the ÒÅ

3
85 mode (shown by an arrow in 

Fig. 2), since it has a rather high Q-factor at a wide 
spectral profile, which facilitates its excitation. 
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Fig. 2. Spectral response function B(rb) of a water droplet 
with a0 = 10 μm as a function of the normalized frequency 
detuning Δω

–
 for radiation with λ0 = 800 nm. Positions of 

natural resonance modes of the particle and the spectral 
profile of a laser pulse (in relative units) with duration 
tp = 1 ps are shown. 

 

First, following Eq. (4), we find the relative 
pulse duration in the train, at which the frequency of 
the first side peak of the radiation spectral intensity 
is equal to the natural frequency of the selected mode 
ω85, 3. We obtain the following value of the pulse 
ratio: 

 p 85,3 0 p2 ( – ) 2.05.s t= π ω ω �  

Then we determine the optimal value of the 
chirping depth by Eq. (5) taking into account the 
relative pulse duration determined at the previous 

stage, which yields b > 4.6. In this case, the maximal 
value of the factor B(rb) (and, consequently, the 

optimal regime of excitation of selected WGM) is 
achieved during irradiation of the particle by a train 
of chirped pulses and is equal to 143, in contrast to 
59.6 for a single pulse and 49.2 for continuum 
radiation. 

 

Conclusions 
 

In this paper, we have considered the problem of 
the most efficient excitation of resonance spatial 
configurations of the internal optical field (WGMs) 
of transparent spherical particles by laser radiation. 
  Our study has shown that the optimal transfer 
of energy of the incident radiation to a preset high-Q 
natural resonance of a particle can be performed with 
the use of frequency-pulsed irradiation in combination 
with the linear frequency modulation of every pulse 
in the train. Varying the relative pulse duration, it is 
possible to tune to the resonance, and varying the 
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chirping depth, it is possible to concentrate energy in 
needed spectral ranges. 

In micron-sized water droplets, this effect is 
most pronounced for radiation consisting of pulses of 
picosecond duration compared to radiation consisting 
of a train of femtosecond pulses. More than twice 
increase in the intensity of optical field of excited 
WGM has been obtained. 

It is assumed that in larger particles, in which 
the density of natural oscillation modes per unit 
frequency range is high, in order to obtain the best 
conditions of cavity excitation, it is necessary to pass 
to subpicosecond frequency-modulated radiation, 
while the femtosecond range of pulse duration gives 
the best results for excitation of submicron particles. 
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