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To determine an optimum phase distribution (PD) of a field the integral 
equation is obtained which generalizes the law of a phase conjugation for the 
stochastic optical fields. Investigations have been carried out using the method of 
phase approximation for the Green's functions and the variational methods. The 
energy criterion of an optical transmitter quality is proposed. In the absence of 
medium inhomogeneities the optimization of the PD makes it possible to compensate 
partially for the diffraction influence, random errors in aiming and receiver 
installation, and to increase the radiation power flux at the receiver by about 10%. 

 
The effects of diffraction scattering, inhomogeneities of 

a propagation medium, errors in aiming and receiver 
installation result in decreasing the radiation power 
(energy) flux at the receiver and considerably restrict 
capabilities of optical communication systems.1,2 Modern 
controllable optical systems3 make it possible to control the 
phase distribution of the field at the output of the optical 
transmitter and, thus, partially compensate for the effects of 
undesirable factors. If only diffraction and medium 
inhomogeneities are taken into consideration, the solution of 
the problem of maximum flux transmission (in the absence 
of nonlinear, with respect to the field, effects) is determined 
by the law of phase conjugation.2–5 In this paper an 
optimum PD of the output radiation of a transmitter is 
studied with the account for communication channel 
properties and typical errors of communication systems in 
aiming and errors caused by uncertainty in a receiver 
position. 

Let us derive an equation for determining an optimum 
PD of the field in the plane of output aperture of an optical 
transmitter of a communication system. Let us first of all 
derive a relation for the radiation power flux at the 
receiver. The distribution of a field U over the plane of the 
receiver aperture can be represented in terms of the integral 
relation 

 

U(r, z, q) = ⌡⌠ 
 dρ A(ρ) G(ρ, r, z) exp i {ϕ(ρ) + ϕq(ρ, q)} , (1) 

 
where A(ρ) is the amplitude distribution of the field in the 
plane of the transmitter output aperture, A(ρ) ≥ 0; r and ρ 
are the radius vectors of the points in the planes of 
apertures of the receiver and transmitter in a cylindrical 
coordinate system; z is the distance from the transmitter to 
the receiver; G(ρ, r, z) is the Green's function2 that takes 
into account the diffraction effects and medium 
inhomogeneities; ϕ(ρ) = ϕs(ρ) + ϕc(ρ) is the phase 

distribution of the field over the plane of the output 
aperture of the transmitter; ϕs(ρ) is the phase distortion of 

the field inside the optical transmitter; ϕc(ρ) is the 

controllable component of the PD being introduced into the 
radiation beam with the help of a phase corrector to 
compensate for the effects of undesirable factors; ϕq(ρ, q) 

are the phase distortions whose resulting effects are  

equivalent to the errors in aiming1 and represent the sum of 
the distortion (it corresponds to the angular error in 
aiming), field curvature and astigmatism (they correspond 
to the errors in focusing onto the receiver); the components 
of the random vector q are the weights of aberration 
polynomials that compose the random function ϕq(ρ, q). 

In view of the stochastic nature of the aiming errors 
and uncertainties in the receiver position the flux of the 
radiation power at the receiver can be characterized by an 
averaged statistical value and is calculated by the formula 
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here the angular brackets designate averaging, 
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and asterisk denotes the complex conjugate. In formulas (2) 
and (3) the aiming errors, uncertainties in the position of 
the receiving aperture and its shape are taken into 
consideration by the probability distribution function 
P(r, z, q) of the aiming error q and condition that the 
points (r, z) belong to the receiving aperture. The function 

P(r, z, q) is normalized so that ∫ P(r, z, q) drdq/S = 1 and 
S is the area of the receiving aperture. If the aiming errors 
are absent and the position of the receiver in the Fresnel 
diffraction zone is reliably known, 
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and in this case  
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where Ψ(ρ, r, z) is an additional shift of the complex phase2 
compared to that in a homogeneous medium for a spherical 
wave passed from the source at the point ρ to the point  
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(r, z). The function Ψ(ρ, r, z) is directly related to the 
inhomogeneities of a medium and this relation has been 
considered in a number of papers (see, for example, Ref. 2 
and bibliography presented there). 

Let us consider the value of the power flux (Eq. (2)) 
as the functional of the phase distribution ϕ. Using the 
method of calculus of variations6 as applied to relation (2) 
for determining optimal phase distribution maximizing 
functional (2) for the cases in which there are no nonlinear, 
with respect to the field, effects we can obtain the 
following integral equation: 
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By means of algebraic transformations equation (5) can be 
reduced to  
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Equations (5) and (6) generalize the law of the phase 
conjugation for the stochastic optical fields. In the general 
case, when determining the power flux and the function 
F(ρ

1
, ρ

2
) the effects of all these factors which cannot be 

taken into account in real time when optimizing the PD are 
subjected to stochastic and (or) determined averaging. In 
addition to the aiming errors and uncertainties due to the 
receiver position, the random errors in forming the 
compensating phase distribution and, uncontrollable, as a 
rule, fluctuations of the field amplitude distribution A(ρ) 
over the plane of the output aperture of the optical 
transmitter can be mentioned among these factors. 

Relations (5) and (6) are the initial ones for studying 
the optimal PD. In the general case an analytical solution 
of the obtained equations cannot be found, therefore, an 
iteration method can be used for solving them numerically. 
Below we shall consider only some particular cases of 
Eqs. (5) and (6). 

1. Small residual errors of compensation. The measure 
of compensation of undesirable factors, as it follows from 
analysis of Eqs. (2) and (5), is the value 
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)}2 . The value σ2

w
 is 

related to the power flux by the approximate formula 
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Formulas (7) and (8) for W and σ2
w
 are obtained by separating 

out the phase component from the integrand in relation (2), 
and by expansion of the corresponding exponential function 
into the Taylor series over the phase value up to the second 
power terms and by the inverse transformation of the obtained 
expression into the exponential function. Because of changes 
in the controllable phase distribution ϕ(ρ) the value σ2

w
  

is directly related to W, i.e., the value W increases 
(decreases) if σ2

w
 decreases (increases). If a source of the field 

phase distortions is inside the transmitter and ψ(ρ, r, z) = 0 
and ϕq(ρ, q) = 0, the value calculated by Eq. (7) for a point 

receiver takes the form of the quality index σ2 (mean square of 
residual phase distortions3) while for an extended receiver it 
takes the form of the index g2 (mean square of the gradient of 
the residual phase distortions7). These conclusions have been 
drawn based on the fact that the function F(ρ

1
, ρ

2
) entering 

into Eq. (7) and determined by relation (4) is comparable 
with S for a receiver close to a point one but the function 
F(ρ

1
, ρ

2
) can be approximated by δ(ρ

1
 – ρ

2
) in the case of an 

extended receiver. Thus, the value σ2
w
 can be considered as the 

energy index of quality of the optical transmitter of a 
communication system. 

For small values of the index of Eq. (7) Eq. (6) 
becomes linear with respect to the function of the optimal 
PD and takes the form of the integral equation 
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Equation (9) can also be derived (using the variation 
method) based on relation (7) and the condition of the 
minimum of σ2

w
. Relation (9) is reduced to an 

nonhomogeneous integral equation of the second kind, the 
methods of its solution are developed in Ref. 8. 

Relations (7)–(9) make it possible to use already known 
techniques3 of investigations of controllable optical systems in 
order to find optimal signals controlling the actuators of the 
phase corrector and to estimate the residual error and the 
efficiency of compensation taking the phase corrector 
characteristics into account. Let, for example, a deformable 
mirror be used to form an optimal PD. In this case3 
 

ϕc(ρ) = ∑
1

N

 
 αi Ri(ρ) , (10) 

 

where Ri(ρ) is the response function of the ith actuator, ai 

is the amplitude of the control signal applied to the ith 
actuator, and N is the total number of actuators of the 
deformable mirror. Substituting Eq. (10) into Eq. (7) by 
virtue of the relation ϕ = ϕc + ϕs and minimizing σ2

w
 as a 

function of ai for optimal values ai we obtain that 
 

⎜⎜αi⎜⎜ = ⎜⎜RR⎜⎜–1 ⎜⎜Rϕ⎜⎜ ,  (11) 
 

here ⎜⎜αi⎜⎜ and ⎜⎜Rϕ⎜⎜ are the matrix columns, ⎜⎜RR⎜⎜–1 is the 

inverse matrix,  
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m, n = 1, 2, ..., N. If Eq (11) is valid the compensation 
error is minimum and equal to 
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Superscript T denotes the transposition procedure, σ 2
ws

 is the 

value of the quality index in the absence of compensation 
(⎜⎜ai⎜⎜ = 0), and the value σ 2

ws
 is calculated by Eq. (7) taking 

into account that ϕ(ρ) is replaced by ϕs(ρ). Further 

investigations require that the PD character of the field 
inside the receiver (either random or regular) and 
inhomogeneities of the medium, the methods of measuring 
the field characteristics, and the methods used to control 
the phase corrector be taken into account. 

2. Nearly point receiver of radiation. If there are no 
uncertainties in the receiver position and errors in aiming 
relation (4) is reduced to the form 
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(15) 
Formula (15) is derived using a linear expansion of the 

exponential integrand from Eq. (4) into the Taylor series, 
taking an integral of this expansion over r, and then by 
performing the inverse transform of the resulting relation 
into an exponential function. Relation (15) is valid when 

kS1/2D/4 z � 1 (D is the diameter of the transmitter 

aperture), while the scale of inhomogeneities of Ψ exceeds 

S1/2 and/or when ⏐Ψ⏐ � 1. Substituting Eq. (15) into 

Eq. (5) or Eq. (8) we can find the solution 
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For a point receiver relation (16) results in the known 
expression 
 

ϕ(ρ) = – (k/2 z) ρ2 – ReΨ(ρ
1
, 0, z) . 

 

The first term in the Eq. (16) for the optimal phase 
distribution describes an optimal radiation focusing on a 
point receiver in a homogeneous medium; the second term is 
related to asymmetry of the receiving aperture and 
coordinates the position of a beam energy center with the 
aperture shape. The third term of Eq. (16) is responsible for 
the law of forming the field phase distribution at the 
transmitter output compensating for the medium 
inhomogeneities in an optimum way according to the 
criterion of a maximum power flux transmitted to the 
receiver located in the Fresnel diffraction zone. 

3. Partial compensation for the diffraction effects. Let 
the medium of radiation propagation be homogeneous, without 
errors in aiming and uncertainty of the receiver position. In 
the case of a linear aperture (a slit–like beam along the Y 
axis; ρ = (X, Y)) and taking into account Eqs. (3) and (4) 
and the imposed restrictions Eq. (5) takes the form 
 

ϕ(x
1
)=arctan 

⌡⌠ 

 dx
2

 A(x
2
) sin (ϕ(x

2
))[sin(ω(x

1
 – x

2
))/(x

1
 – x

2
)]

⌡⌠ 

 dx
2

 A(x
2
) cos (ϕ(x

2
))[sin(ω(x

1
 – x

2
))/(x

1
 – x

2
)]

, 

 (17) 
where ω = kDp D/4 z, Dp is the size of a slit–like receiver; D 

is the size of the transmitting aperture; and, x = 2X/D. From 
the very beginning the quadratic component (– (kD 

2/8 z) x 
2) 

of the optimum phase, which determines an optimum focal 
length of the optical transmitter for focusing radiation onto 
a point receiver, is excluded from Eq. (17). For ω = 0 there 
exists a solution of Eq. (17) that can be written as 
ϕ(x) = const, what well agrees with the results of analysis 
carried out in Sec. 3. For ω ⇒ ∞ the function between 
brackets in Eq. (17) approaches δ–function, therefore, any 
function ϕ(x) gives the solution of Eq. (17). For the finite 
values of ω there exist several solutions of Eq. (17) in 
addition to the obvious one ϕ(x) = const.  
 

 
 

FIG. 1. Optimum phase distribution partially compensating 
for diffraction effects; ϕ(x) = – ϕ(–x). 1) ω = 2.2, 
δW/W = 18%; 2) 2.7, 40%; 3) 2.2, 22%; and, 4) 1.9, 4%. 
 

If the function of the amplitude distribution A(x) is even, 
the solutions can be grouped into the symmetric solutions 
ϕ(x) = ϕ(–x) and the asymmetric ones ϕ(x) = –ϕ(–x). To 
verify these conclusions Eq. (17) has been solved 
numerically by an iterative method. The functions of 
optimum phase distribution are shown in Fig. 1 for the case 
of uniform amplitude distribution of the field over the 
linear aperture with the symmetric central screening. If the 
value of ω is within the range from 2 to 4, the optimum PD 
is nearly linear ϕ(x) ∼ x, maximum deviation of the phase 
from a uniform one amounts from 2 to 3 radians or 
1/2 ... 1/3 in the units of radiation wavelength. Relative 
increase δW/W of the radiation power flux reaches 40% in 
comparison with the case of uniform phase distribution and 
depends on the receiver size.  

The effect of maximization of the radiation power flux 
for the case of nearly linear PD is shown in Fig. 2, which 
represents the radiation intensity of the receiver aperture as 
a function of the normalized coordinate ω. If the receiver 
aperture is limited by the points I certain displacement of 
the receiver to the right or to the left, what corresponds to 
the case of a linear phase distribution over the transmitting 
aperture, does not result in considerable changes of the 
radiation power flux because a decrease (increase) of 
radiation power on the right part of the aperture is  
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compensated for by practically the same increase (decrease) 
on its left part. If the receiving aperture is limited by points 
II then a small displacement of the receiver will lead to an 
increase of the radiation power flux. It can be explained by 
the fact that when one of the edges of the receiver aperture 
gets into the region of high power density, while the 
opposite edge of the receiver aperture reaches the region of 
low power density and does not leave its boundaries. 

 

 
 

FIG. 2. 
 

It should be noted that the results presented in Sec. 3 
are equivalent to the following statement: to maximize the 
power flux through an extended receiver a nonparabolic 
forming mirror is needed for transmitting coherent radiation 
through a homogeneous medium. 

4. Partial compensation for random uncertainties in the 
receiver position or angular errors in aiming. Let the field 
formed by a linear emitter (with infinite size along the Y axis) 
be transmitted through a homogeneous medium to a point 
receiver. The position of the receiver in the direction of the X 
axis is known correctly to a constant within the interval  
[– Dp/2, Dp/2] of the probability distribution function P(X), 

the distance to the receiver aperture is equal to z. In this case 
the function  
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entering into Eq. (5) and being determined by relations (3) 
and (4) as well as Eq. (5) for finding the optimum phase 
distribution in view of uncertainties in the receiver position 
take the form of integral equation (17) for ω = kDp 

D/4 z; 

x = 2x/D. The same equation results from the investigation 
of a compensation for the aiming errors (if there are no 
uncertainties in the receiver position). In this case the phase 
distortions of the field equivalent to the angular errors in 
aiming can be represented in the form1 
ϕq(x) = (k qx D/2) x, qx is the random angular error in 

aiming (in radians) uniformly distributed over the interval 

[– qx 0
, qx 0

]; ⏐qx 0
⏐ � 1; ω = k ⏐qx 

0
⏐ D/2. Thus, the results  

 

of analysis of Eq. (17) presented in Sec. 3 are applicable to 
investigations of the partial compensation for uncertainties in 
the point receiver position or the aiming errors. Hence, to 
provide a maximum statistical mean power density at the 
receiver for ω | 2 ... 4 it is reasonable to introduce the PD 
similar to the additional static angular error in aiming. 
However, it should be taken into account that the result of 
PD optimization depends strongly on the probability 
distribution function P(ρ, z; q), which can be found from the 
theoretical and (or) experimental investigations1 of an 
individual communication system. 

Conclusions. The integral equation generalizing the 
law of phase conjugation for the random optical fields is 
obtained to determine the phase distribution (PD) of the 
field that maximizes the power flux through a randomly 
disposed receiver when transmitting radiation through an 
inhomogeneous medium with the aiming errors. The 
investigations were carried out using the Green's functions 
for a field in an inhomogeneous medium and the variational 
method. It was shown that the optimum phase distribution 
can be represented in the form of a sum of three terms. One 
of them describes the optimum focusing onto a receiver in a 
homogeneous medium. The second one represents the 
compensation for medium inhomogeneities. The third term 
describes the distribution of the power density over the 
beam cross section in accordance with the position and 
shape of the receiver aperture. In the absence of medium 
inhomogeneities the optimization of phase distribution 
makes it possible to partially compensate for the diffraction 
effects, random aiming errors, and uncertainties in the 
receiver position as well as to increase the power flux of 
radiation through the receiver by 10%. 

 
REFERENCES 

 
1. R.M. Gal'yardi and Sh. Karp, Optical Communication 
(Svyaz', Moscow, 1978), 424 pp. 
2. V.L. Mironov, Propagation of a Laser Beam Through the 
Turbulent Atmosphere (Nauka, Novosibirsk, 1981), 247 pp. 
3. M.A. Vorontsov, A.V. Koryabin, and V.I. Shmal'gausen, 
Controllable Optical Systems (Nauka, Moscow, 1988), 
272 pp. 
4. P.A. Bakut and V.A. Loginov, Kvant. Elektron. 9, No. 6, 
1167 (1982). 
5. V.P. Lukin and M.I. Charnotskii, Atm. Opt. 3, No. 12, 
1170–1174 (1990). 
6. V.S. Buslaev, Calculus of Variations (Leningrad State 
University, Leningrad, 1980), 288 pp. 
7. V.I. Kislov and V.G. Taranenko, Radiotekhn. Elektron. 31, 
No. 11, 2187 (1986). 
8. G.A. Korn and T.M. Korn, Mathematical Handbook for 
Scientists and Engineers (McGraw–Hill, New York, 1961). 
 


