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This paper presents model investigations into the scattering of polarized 
radiation in anisotropic plane-parallel media. A polydisperse mixture of ice 
cylinders oriented mainly horizontally has been selected as a model. It has been 
supposed that the particles are randomly oriented in a horizontal plane. We have 
considered different angles of radiation incidence on a medium. The particles 
have been supposed to be free of admixtures and possessing homogeneous internal 
structure.  The calculations have shown that the anisotropy of scattering media 
significantly affect the angular behavior of the scattering phase matrix elements 
with respect to both polar (θ) and azimuthal (ϕ) angles. 

 

1. INTRODUCTION 
 
The anisotropy of a medium can significantly 

affect the polarization of radiation propagated through 
it. Polarization measurements are usually much more 
complicated compared to measurements of intensity, 
but they bear more information about the 
microstructure of the media sounded. A lot of 
calculational data are accumulated to date, on the 
scattering of polarized radiation by ensembles of 
randomly oriented nonspherical particles, such as 
spheroids,1 Chebyshev particles,2 hexagonal crystals,3,4,5 
and elongated cylinders.6,7 

The purpose of this paper is to extend the 
calculations6,7 of the polarization properties of light 
scattering to the case of anisotropic media. The 
account for preferred orientation in the ensemble of 
nonspherical particles simulated leads to an increase 
in computer time necessary for calculating 
polarization properties of light scattering by 2 to 3 
orders of magnitude as compared to the case of 
random orientation what makes a variety of model 
calculations impracticable. The bulk of output 
information increases approximately to the same 
degree.  In this paper we take an ensemble of 
elongated cylinders randomly oriented in a fixed 
plane as a model in calculations.  Attention to such 
a model is based on the results of lidar 
measurements which show that crystal particles 
take a preferred orientation with respect to the 
horizontal plane, owing to great difference between 
their big and small size. 

 
2. CALCULATIONAL TECHNIQUE 

 

The approximate solution to the problem on 
scattering of electromagnetic waves by 
homogeneous elongated cylinders of finite length 
 

has been given in Ref. 8. For an individual 
cylinder, the scattered field is written in the 
coordinate system (CS) X′Y′Z′ related to its axis of 
symmetry, that coincides with Z′-axis, and the 

wave vector of the incident field k(i) lies in the 
X′Z′ plane at an angle β with respect to Z′-axis. 

The wave vector of scattered field k(s) has an 
arbitrary direction set by the angles θ′ and ϕ′ in the 
X′Y′Z′ coordinate system. To calculate the field 
scattered by an ensemble of oriented cylindrical 
particles, it is convenient to introduce a different 
coordinate system, XYZ, whose Z-axis coincides 
with k(i). The choice of X-axis is determined by the 
geometry of interaction of the incident radiation 
with the scattering medium. Orientation of the 
cylinder in this CS, i.e., the direction of its axis of 
symmetry is set by two Euler angles (α, β). The 
relation between two CSs is shown in Fig. 1. In the 
CS X′Y′Z′ related to the body, the scattered field 
at a distance R from the cylinder (in the far zone) 
is related to the incident field by the following 
formula: 
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where E
s

l and E
s

r are the parallel and perpendicular 
components of the scattered field in the scattering 

plane SOA, respectively, and, analogously, E
i

l and E
i

r 
are the components of the incident field in the IOA 

plane. The unit vectors e
s

l and e
s

r are the parallel and 
perpendicular vectors to the scattering plane. These 

vectors are selected so that e
s

r×e
s

l coincides with the 
direction of propagation. The amplitude functions Ai 
(i = 1, 2, 3, 4) are expressed in terms of the amplitude 
functions of the infinite cylinder Ti as follows8: 
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Ai(θ′, ϕ′, β, a, l) = 

= (kl/π)E[kl(cosθ′ – cosβ)/2]Ti(ϕ′, β, a),  (2) 

where a and l are the radius and length of the 
cylinder, k = 2π/λ is the wave number; λ is the 
wavelength of incident radiation; E(x) = sin(x)/x.  
The process of scattering is also described as a linear 
transform of the Stokes parameters [Ii, Qi, Ui, Vi] of 
the incident field into the Stokes parameters of the 
scattered field with the transform matrix F 
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where the matrix F consists of 16 elements, each of 
them being real and expressed in terms of the squared 
amplitude functions A1, A2, A3, A4 (Ref. 9). 
 

 
 

FIG. 1. Geometry of scattering by an arbitrarily 
oriented cylinder.   

 
Formulas (1)–(3) describe the process of 

scattering by a separate cylinder.  When passing to 
the ensemble of arbitrarily oriented cylinders, it is 
necessary to describe the process of scattering relative 
to a plane independent of each cylinder orientation.  
The plane containing the wave vectors of the 
scattered and incident fields (SOI in Fig. 1) is 
usually selected as such a plane. The Stokes 
parameters of the field scattered in the S(θ, ϕ) 
direction in the scattering plane SOI (in CS related 
to the incident field) can be obtained in the 
following linear process: 

a) transform of the Stokes parameters of the 
incidence field at the turn of the incidence plane 
from SOI to IOA; 

b) solving the scattering problem in CS related 
to the body, i.e. solving Eq. (1); 

c) transform of the Stokes parameters of the 
scattered field at the turn of the scattering plane 
from SOA to SOI. 

Mathematically this is expressed as follows 
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Z(θ, ϕ, β, a, l) = L(–γ)F(θ′, ϕ′, β, a, l)L(ϕ – α), (5) 

where L(–δ) is the matrix of the Stokes parameters 
transform at a turn of the scattering plane by an 
angle δ clockwise, if looking along the wave 
propagation direction 
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The angles θ′, ϕ′ and γ in Eqs. (2) and (5) at an 
arbitrary orientation (α, β) of a cylinder can be 
expressed using the angles θ, α –ϕ, β 

cosθ′ = cosθ cosβ + sinθ sinβ cos(α–ϕ), 

cosϕ′ = [cosθ sinβ – sinθ cosβ cos(α–ϕ)]/±sinθ′, 

cosγ = [cosβ sinθ – sinβ cosθ cos(α–ϕ)]/±sinθ′, 

where the “plus” sign denotes the case, when  
0 < α–ϕ < π, and the “minus” sign denotes the case 
when π < α–ϕ < 2π. 

The aforementioned process is different than 
the analogous one for the arbitrarily oriented 
spheroids1 in the choice of the X-axis (it is 
determined here by the geometry of interaction of 
the incident radiation with the medium) as well as 
in the third factor in the right-hand side of Eq. (5). 

The average normalized scattering phase matrix 
(SPM) P(θ, ϕ) of a polydisperse ensemble of 
cylinders, orientation of the axes of which (with 
respect to the incident radiation direction) is set by 
the weighting function g(α, β), is obtained by 
integrating SPM over all orientations and size 

Ð(θ, ϕ) = 
4π

k2Cs
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× g(α, β)n(a, l)dα,  (7) 

where n(a, l) is the cylinder size distribution density, 
Cs is the ensemble average scattering cross section, 
and k is the wave number. It should be emphasized 
that g(α, β) and Cs for anisotropic media depend on 
the geometry of interaction of the incident radiation 
with the medium.  The factor before the integrals is 
selected according to the condition of normalizing the 
scattering phase function P11(θ, ϕ) 
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 Ð11(θ, ϕ)sinθdθ = 4π.    (8) 

This paper is aimed at revealing regular features 
in the spatial angular variation of the elements of the 
scattering phase matrices of the media with a selected 
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plane of symmetry, depending on geometry of 
interaction of the incident radiation with such 
media.  Cylinders are selected as a model of 
particles, uniformly oriented in the plane. When 
solving the problem on light scattering, one usually 
uses the coordinate system related to the incident 
radiation direction.  The scattering geometry in 
such media is shown in Fig. 2.  Here XZ is the 
incidence plane, the directions of incidence and  
Z-axis coincide.  Cylinders are uniformly oriented 
in the FOA plane, where OA is the axis of an 
arbitrary cylinder.  The angles are: ∠IFA = π/2; 
β0 = ∠FOI is the angle of incidence of the 
radiation on the plane; α0 = ∠FOA – is the angle 
of orientation of the cylinder axes in the FOA 
plane.  The angles α and β set the cylinder 
orientation in the XYZ coordinate system. Based 
on spherical trigonometry, one can obtain the 
relationship between these angles 

cosβ = cosβ0 cosα0 ,   sinα = sinα0/sinβ.  (9) 

Since the plane and the cylinder have the 
mirror symmetry, it is sufficient to consider only 
the following ranges of variation of the angles 
0 < β0 ≤ π/2, 0 ≤ ϕ ≤ π, with the α0 varying 
uniformly in the range from 0 to π. 

 

 
 

FIG. 2.  Geometry of interaction of incident 
radiation with plane-parallel medium. 

 
3. RESULTS OF CALCULATIONS 

 

Five cases of the incident radiation were 
considered: β0 = 90, 85, 81, 75, and 60°, as well as 
the ensembles of randomly oriented cylinders of 
similar disperse composition.  Elements of the 
scattering phase matrix were calculated using the 
Monte-Carlo method.  The distribution of particles 
over cross section radius a was simulated by 
lognormal with the mean geometrical radius from 
the resonance range of scattering (where the 
elements of the scattering phase matrix vary most 
strongly depending on the particle size) 
am = 0.5 μm and am = 1.0 μm, and the rms error 
 

σa = 0.5.  The cylinder length was assumed to be 
uniformly distributed in the range from 8a to 10a.  
Convergence of the integral was controlled by the 
results of numerical estimation for the case of the 
incident radiation β0 = 90°, because in this case no 
dependence of the SPM elements on the angle ϕ occurs. 

All calculations were carried out for the 
wavelength of incident radiation λ = 1.06 μm and the 
ice refractive index n = 1.299 – i2⋅10–4. Estimates 
were obtained for all non-zero elements of the SPM, 
however, due to the limited size of paper, Figures 3–
5 illustrate only the calculational data on the most 
significant elements in the case of the cylinder 
ensembles with am = 0.5 μm.  Note, that in the case 
of the slant incidence of radiation on the plane-
parallel layer, the SPM has a symmetrical shape and 
consists of ten non-zero elements, as well as the fact 
that all the below conclusions, concerning the 
ensembles with am = 0.5 μm, also apply to the 
ensembles with am = 1.0 μm. 

Let us present some peculiarities of the spatial 
angular behavior of the SPM elements shown in 
Figs. 3–5: 

a) P11(θ, ϕ) is the scattering phase function of 
unpolarized incident radiation (see Fig. 3). 

The parameters β0, P11(0, ϕ) and P11(π, ϕ) are 
constant with respect to ϕ at all incident angles, in 
spite of the fact that at all angles θ close to π they 
essentially depend on ϕ, what is natural for 
scattering of unpolarized light.  Although the 
medium is discrete, the Snellius law well manifests 
itself, and the local maximum (the portion of 
radiation reflected from the plane) takes the same 
values at all β0.  The range of low values P11(θ, ϕ) 
at β0 = 90° lies in the θ range of 110–130°. When 
β0 = 85°, it extends over θ and concentrates near ϕ 
equal to 90°. It gradually broadens both on θ and 
ϕ, as β0 decreases, and becomes deeper (the values 
P11(θ, ϕ) fall), as well as shifts to the range of 
larger ϕ.  Physically this means that the portion of 
radiation scattered to the semi-space of the 
reflected beam, increases, as β0 decreases. 

b) p(θ, ϕ) = –P12/P11 is the polarization degree 
of scattered radiation for the unpolarized incident 
radiation (Fig. 4). 

In the case of random orientation of particles 
p(θ, ϕ) is very close to zero.  If β0 = 90°, the value 
p is constant on ϕ and has a maximum near the 
angle θ = 130°.  If β0 = 85°, p mainly varies on ϕ 
at the angles θ close to π, two ranges of high p 
values appear near the (θ, ϕ) points (π, 0) and 
(π, π), while low values p occur near the point 
(π, π/2).  As β0 decreases, the size of these ranges 
increases, as well as the maximum and minimum of 
p in this ranges increase in absolute value.  It can 
be interpreted for the angles θ close to π and 
β0 = 75° as follows: unpolarized light slantly 
incident on the plane medium is linearly polarized 
mainly in the incident plane. 



 

 
FIG. 3. Spatial angular behavior of the scattering phase matrix elements P11(θ, ϕ) at different angles of 
radiation incidence on plane-parallel medium. 
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FIG. 4.  The same as in Fig. 3, for – P12/P11. 
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FIG. 5.  The same as in Fig. 3, for P22/P11. 
 

c) d(θ, ϕ) = P22/P11 (Fig. 5). The value (1 –
 d) is called the depolarization coefficient for the 
polarized incident radiation and it is the measure of 
particle nonsphericity. The element d(θ, ϕ) is most 
strongly varying with variations in β0 among all the 

aforementioned elements. These variations occur in 
a wide range of the angles θ and ϕ.  Let us note the 
most essential tendencies. At β0 = 85° one can 
observe the appearance of the range of low d values 
near the scattering direction θ = 120°, ϕ = 90° in 



10   Atmos. Oceanic Opt.  /January  1997/  Vol. 10,  No. 1 D.N. Romashov 
 

 

comparison with the normal incidence (β0 = 90°), as 
well as two regions of low d values near ϕ = 45 and 
135° are observed at the angles θ close to π, and three 
regions of high values are observed near ϕ = 0, 90 and 
180°. As β0 decreases, the low values continue to 
decrease while high values increase, and these regions 
broaden. 

Let us also note that in the case of backscattering 
the dependence of scattering phase matrix elements on 
ϕ has a harmonic behavior and Pij(π, ϕ) = Pij(π, π – ϕ). 

Thus, anisotropy of the scattering medium 
essentially affects the spatial and angular behavior of 
the light scattering and the polarization properties of 
the scattered radiation. 
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