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Numerical analysis of light beam propagation through the turbulent 
atmosphere is carried out by means of Monte Carlo method.  The optimization 
of phase screens is proposed to raise the reliability of numerical prediction of 
such effects as random wandering and broadening of a beam.  The influence of 
outer scale and the turbulence strength on the statistics of power 
characteristics of collimated and focused beams is studied. 

 
As known the atmospheric turbulence is 

characterized by an extremely wide spatial spectrum of 
the refractive index fluctuations n, which are hard for a 
comprehensive presentation on a calculation grid 
accessible for modern computers.  At the same time the 
fluctuation spectrum n rapidly decreases with 
increasing spatial frequency, therefore the optical 
aberrations of low orders prevail in distortions of the 
light wave phase.  Clear confirmation of this fact is 
given in Ref. 1 where the experimentally measured 
wave fronts of a laser beam propagated through the 
atmospheric ground layer are presented.  

This circumstance makes a basis for the 
conception of separate simulation of large- and small-
scale fluctuations of the refractive index.2,3 At 
present this conception is widely used and allows one 
to analyze the influence of different parts of the 
spectrum on statistics of beam light field.  The 
conception is based on the assumption that random 
wandering and beam broadening as a whole leading 
to blurring of the mean intensity profile during long 
recording of light field are caused by the low 
frequency portion of the turbulence spectrum on the 
whole. 

This present paper is devoted to numerical 
investigation of these effects on the base of modal 
representation of the atmospheric inhomogeneities.  
The parameters of numerical model are optimized by 
comparing the results obtained by the Monte Carlo 
method with the predictions by analytical theories.  
Different spectra of the atmospheric turbulence are 
considered and influence of the outer and inner scales 
on the power characteristics of light beam are 
determined under the conditions of weak, moderate, 
and strong fluctuations.   

 
1. OPTIMIZATION OF THE PHASE SCREEN 

MODEL 
 

To investigate light beam propagation through 
the turbulent atmosphere we use the quasi-optical 
approximation of diffraction theory.  The equation of 
propagation is integrated by the method of splitting 

physical factors4 on the basis of phase screen model. 
As known, for the modal representation of the phase 
distortions of light wave in the atmosphere5–8 the 
diameter D of the circle of phase expansion into a 
series over the orthogonal polynomials (the Zernike 
modes, usually) is a free parameter.  At the same 
time, the diameter D determines the variances of 
random coefficients of the Zernike modes, therefore 

its value influences the variance σϕ

2
 of the phase 

fluctuations on a screen.  It is natural to expect that 
in the limit when the number of Zernike modes 

increases the dependence of σϕ

2
 on D unboundedly 

weakens. Apparently, an ideal phase screen, which is 
a superposition of infinite number of Zernike modes, 
ought to reproduce correctly the wave phase 
fluctuations at any D. But in the numerical 
experiment the number of Zernike modes is finite 
and, generally speaking, it is not large enough.  
Therefore, the estimations of the diameter of the 
phase expansion circle D and Zernike polynomial 
number J, for which such effects as wandering and 
broadening of a beam are reproduced satisfactorily 
are of interest. 

Results of the analytically theory9 developed for 
effective beam parameters in the atmosphere are used 
as a basis for making these estimations.  In 
particular, when using the Kolmogorov model of 
turbulence a formula is obtained in Ref. 9 for the 
beam effective radius aef determining the dimension 
of the area which is covered by the wandering beam 
in the observation plane: 

aef = ad{1 + 1.624 (β0

2
)
6/5

 z/(k0 ad

2
)}

1/2
,  (1) 

where 
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is the radius of diffraction-limited Gaussian beam in 
vacuum, a0 is the initial beam radius, z is the path 
length, k0 is the optical wave number, Rf is the focal 
length, 
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β0

2
 = 1.23 Cn

2
 k 0

7/6
 z11/6  (3) 

is the Rytov variance, C
n

2 is the structure constant of 
the refractive index fluctuations. 

In the numerical experiment the following beam 
characteristics were calculated by the Monte Carlo 
method: 

the rms displacement of the centroid 

ρc = <r~c> ,   r~c = x~c

2
 + y~c

2
 ,  (4) 

xc = ⌡⌠ ⌡⌠  x I dx dy/⌡⌠ ⌡⌠  I dx dy ,  

yc = ⌡⌠ ⌡⌠  y I dx dy/⌡⌠ ⌡⌠  I dx dy , 

the effective radius determined from the mean 
intensity is 

aef = 
⎩
⎨
⎧

⎭
⎬
⎫

⌡⌠ ⌡⌠  (x2
 + y2) <I> dx dy/⌡⌠ ⌡⌠ I

 
dx

 
dy  

1/2

.  (5) 

The averaging was performed over 100 
observations for the beam with the following 
parameters: the initial radius a0 = 5 cm, light 
wavelength λ = 1.06 μm (diffraction beam length 
zd = 14.82 km). The grid of 128×128 points and the 
cell size A0 = 100 cm containing was used in 
calculations. The number of the phase screens 
varied from S = 10 to S = 20, the path length of 
z = 7.41 km was chosen (i.e. 0.5 zd).  In these 
calculations we used Kolmogorov model of 
turbulence. 

 

1.1. Collimated beam 

 

When simulating the phase screens consider 
first the five Zernike polynomials describing 
aberrations of the first and second order (the piston 
mode is excluded from the consideration here and 
below). Figure 1 presents calculated values of aef as 
a function of z obtained for different ratios D/a0 

for the case of moderate fluctuations (C
2

n = 5⋅10–

17
 ñm–2/3, β

2

0 = 1.31). One can see that the best 
agreement between calculated dependences and the 
analytical one obtained by formula (1) is observed 
for D/a0 = 2.5.  When D rises the beam effective 
radius decreases what is explained by a decrease in 
the variances of the optical mode describing the 
phase fluctuations of light wave.  Figure 2 shows 
similar dependences obtained for D/a0 = 2.5 for 

the cases of the weak (β
2

0 = 0.26), moderate (β
2

0

 = 1.31), and strong (β
2

0 = 13.1) fluctuations. A 
good coincidence of theoretical and calculated 
curves in the first two cases and a considerable 
difference between them under the condition of 
strong fluctuations is observed. 

 
FIG. 1. Parameter aef as a function of z for a 
collimated beam and Kolmogorov model of the 
turbulence. Curves: 1– theory, 2–4 – Monte Carlo 
method for various values of the parameter D/a0: 2 – 
D/a0 = 2.5, 3 – D/a0 = 4, 4 – D/a0 = 10, 5 – 
propagation in vacuum. Turbulence is simulated by 

J = 5 Zernike modes, β
2

0 = 1.31. 

 
FIG. 2. Parameter aef as a function of z for a 
collimated beam and Kolmogorov model of the 
turbulence. Curves: 1, 2, 3 – theory, 1′, 2′, 3′ – 

Monte Carlo method (β
2

0 = 13.1, 1.31, 0.26, 
correspondingly). Parameters of phase screens are: 
J = 5, D/a0 = 2.5. 

 

It is interesting to make an attempt of achieving a 
better agreement between calculated and theoretical 
dependences by increasing a number of the Zernike 
modes J when simulating the phase screens.  In this 
case J = 14 for the modes of the 4th order and J = 44 
for the modes of the 6th order inclusive.  Calculated 
dependences of aef on z obtained for different numbers 

of the Zernike modes are presented in Fig. 3 (β
2

0 = 1.31, 

D/a0 = 4, Fig. 3a) and (β
2

0 = 13.1, D/a0 = 8, 
Fig. 3b).  One can see from the figures that increase of 
the number of modes when simulating the phase 
screens produce an appreciable effect at the moderate 
fluctuations and far weaker effect at the strong 
fluctuations.  It is necessary to note that the optimal 
diameter of the area of phase expansion D increases 
with increasing number of modes from D/a0 = 2.5 for 
J = 5 to D/a0 = 8 for J = 44.   
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FIG. 3. Parameter aef as a function of z for a 
collimated beam and Kolmogorov model of the 
turbulence.  Curves: 1 – theory, 2–4 – Monte Carlo 
method for various numbers of Zernike modes J on 
the phase screens: 2 – J = 44, 3 – J = 14, 4 – J = 5, 
5 – propagation in vacuum. Figure 3a – D/a0 = 4, 

β
2

0 = 1.31; Fig. 3b – D/a0 = 8, β
2

0 = 13.1. 
 

Considerable difference between the 
calculational data based on theoretical predictions 
under conditions of strong fluctuations (Fig. 3b) can 
not be explained by the limitedness of the basis when 
generating the phase screen because the increase of J 
from 14 to 44 leads to an increase in aef not more 
than 2%. From our point of view it is natural to 
assume that under the conditions considered the 
theory gives too high values of aef. Really, the results 
from Ref. 9 are based on the assumption that a 
profile of the beam mean intensity is Gaussian for 
long-exposure recording. Analysis of the mean 
intensity profiles obtained during the numerical 
experiments for various J (Fig. 4a) shows that under 
the condition of strong fluctuations this assumption 
is true only partially. This fact becomes obvious 
when analyzing the curves in Fig. 4b where the plots 
of the functions ln(<I>max/<I(x)>) obtained for the 
profiles <I(x)> presented in Fig. 4a are shown (here 
<I>max is the maximum value of intensity for the 

given profile). Straight line in this figure corresponds 
to the Gaussian profile with the effective radius 
obtained by formula (1). One can clearly see the 
difference in the slopes of the calculated dependences 
from the slope of the theoretical straight line which 
is especially essential in the beam periphery.   
 

 
a 
 

 
b 
 

FIG. 4 Mean intensity profiles obtained by Monte 
Carlo method for the Kolmogorov model of 
turbulence.  Curves: 1 – J = 5, 2 – J = 14, 3 – 
J = 44 (D/a0 = 4), 4 – Gaussian profile with aef 
obtained theoretically (a). Logarithmic 
representation of the profiles (b) presented in 
Fig. 4a. 

 
Therefore, it should be expected that with the 

increase of the fluctuation strength the formula (1) 
will overestimate the effective beam radius as 
compared with the Monte Carlo method.  

 
1.2. Focused beam 

 
When analyzing numerically propagation of a 

focused beam we are limited by a simple model of the 
phase screens containing the modes of the first and 
second order (J = 5) with an optimal for this case ratio 
D/a0 = 2.5.  The beam focused at the distance 
Rf = 7.41 km (= 0.5zd) is considered.  Calculated and 
theoretical dependences of aef on z are presented in 

Fig. 5 for three values of C
2

n corresponding to β
2

0 = 0.26; 
1.31; and 13.1. One can see that, as it was for the 
collimated beam under the condition of weak and 
moderate fluctuations the theoretical and numerical 
dependences agree quite satisfactorily, under the 
condition of strong fluctuations the formula (1) gives 
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too high values for aef.  At the same time the 
coordinates of the effective turbulent waist of the beam 
determined by Monte Carlo method and by the 
analytical relation (1) well agree over a wide range of 

C
2

n values. As it was to be expected the turbulent waist 
was displaced in the direction toward the emitting 
aperture as the strength of the turbulence increases. 

 

 

 

FIG. 5. Parameter aef as a function of z for a 
focused beam and Kolmogorov model of the 
turbulence. Curves: 1, 2, 3 – theory, 1′, 2′, 3′ – 

Monte Carlo method (β
2

0 = 13.1, 1.31, 0.26, 
respectively). Parameters of the phase screens are: 
J = 5, D/a0 = 2.5. Focusing radius is Rf = 0.5zd. 

 

2. THE ROLE OF THE OUTER SCALE OF 

TURBULENCE 

 
The estimation of the influence of the outer scale 

of turbulence on the power characteristics of the 
beam are performed here using Karman spectrum of 
atmospheric inhomogeneities.10 Beam propagation 
conditions are chosen as in the section 1. 

Figure 6 presents the calculated values of aef as a 
function of z obtained for a collimated beam under 

the condition of moderate fluctuations (C
2

n = 5⋅10–

17
 cm–2/3) for various values of the outer scale of 

turbulence L0. For a comparison the results obtained 
for Kolmogorov turbulence from Fig. 1 are also 
shown here, i.e., the calculated curve for L0 = ∞ and 
the curve by formula (1).  One can see that with a 
decrease in the outer scale of turbulence the beam 
effective radius decreases. Moreover, the decrease in 
aef is most essential in the region of small L0.  This 
effect is explained, on the whole, by a decrease in the 
variance of the beam random displacements and, in 
the lesser degree, by a decrease in the turbulent 
broadening, because the outer scale value influences 
the variances of the wavefront tilts most strongly.3,11 

Results of the analysis made for a focused beam 
are presented in Fig. 7 for Rf = 0.5zd. The 
dependences of aef on z obtained under the condition 
of weak and moderate fluctuations for both 
Kolmogorov and Karman models of turbulence with 
L0 = 100 a0 (5 m) are shown in this figure. To 
compare the curves obtained by formula (1) are 
presented in Fig. 7. One can see that when the outer 
scale decreases the turbulent waist moves off from 
the emitting aperture under all the above considered 

conditions.  When C
2

n increases at a fixed L0 the 

turbulent waist moves in the direction of a source as 
it takes place in the Kolmogorov model too. 

 

 

 

FIG. 6. Parameter aef as a function of z for a 
collimated beam when using Karman model of 

turbulence (β
2

0 = 1.31). Curves: 1, 2 – theory and 
Monte Carlo method for L0 = ∞; 3, 4 – theory and 
Monte Carlo method for L0 = 5 m and 2 m, 
respectively; 5 – propagation in vacuum. 
 

 

 

FIG. 7. Parameter aef as a function of z for a focused 
beam for the Karman model of turbulence.  Curves: 1, 
2 – theory and Monte Carlo method for L0 = ∞,  

β
2

0 = 1.31; 3 – Monte Carlo method for L0 = 5 m,  

β
2

0 = 1.31, 4, 5 – theory and Monte Carlo method for 

L0 = ∞, β
2

0 = 0.26; 6 – Monte Carlo method for 

L0 = 5 m, β
2

0 = 0.26, 7 – propagation in vacuum. 
Focusing radius is Rf = 0.5zd. 

 
3. RANDOM DISPLACEMENTS OF THE BEAM 

CENTROID 

 
Important advantage of the Monte Carlo method 

is that this method allows the statistics of different 
characteristics of light beam to be investigated 
separately.  In particular, this method can be used to 
confirm the analytical results obtained in Ref. 12 for 
the variance of beam random displacement.  In 
approximation of a given field of collimated Gaussian 
beam the following formula is obtained in Ref. 12 

ρc

2
 = 

4p2 z3

3  ⌡⌠
0

∞

 κ3 Φn(κ) exp(–κ2 a0

2
/2) dκ ,  (6) 

where Φ
n is the spectrum of the refractive index 

fluctuations.  For the Kolmogorov model of 
turbulence the integral (6) is calculated analytically 
and leads to the expression 
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ρc

2
 = 

0.132 p2 G(1/6)
3⋅25/6  Cn

2
 z3 a 0

–1/3
.  (7) 

For other spectra of the atmospheric turbulence the 
calculation of the integral (6) is performed easily 
by any quadrature formula. 

Table I presents the results of numerical analysis 
of random displacements of the centroid of a collimated 
beam compared with the data obtained by the formulas 
(6) and (7).  One can see a good coincidence of the 
theory with the Monte Carlo method over a wide range 
of variation of the outer scale and turbulence strength.  

 
TABLE I. The rms displacement of power center of collimated beam ρc/a0 as a function of the outer scale of 
turbulence L0 (a0 = 5 cm, λ = 1.06 μm, z = 0.5zd). 

 

Cn

2
, β0

2
 

L0/a0 = ∞ 

L0/a0 = 100 L0/a0 = 40 

cm–2/3
 

 

Theory 

Monte Carlo 
method 

Theory Monte Carlo 
method 

Theory Monte Carlo 
method 

1⋅10–17
 

0.26 0.358 0.356 0.309 0.314 0.240 0.244 

5⋅10–17
 

1.31 0.800 0.806 0.710 0.708 0.53  0.55   
5⋅10–16

 

13.1 2.58 2.55   2.11  2.18   1.77  1.75   

 

CONCLUSION 

 
The main result of this paper is a development 

of the phase screen method for numerical analysis 
of light beam propagation through the turbulent 
atmosphere. Procedure to select the diameter D of a 
circle of phase fluctuation expansions over Zernike 
modes which is a free parameter for the modal 
approach to the phase screen generation is 
proposed.  It is established that the obtained value 
of D ensures a reliable prediction of the broadening 
and wandering of collimated beam as well as 
focused one for the case of the weak and moderate 
fluctuations. 
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