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Based on the analysis of many foreshortening projections of incoherently 
emitting inhomogeneities, the tomography problem of their structure is reduced 
to an integral equation of Abel type. New solution based on a convenient 
variable substitution, transforming the problem to convolution equation, and 
on the use of the Fourier transform.  Efficiency and stability of the solution 
have been confirmed by the results of simulation. 

 
1. INTRODUCTION 

 
Recently, there appeared a considerable interest in 

tomography for remote diagnostics of various media.  
Numerical tomographic methods based on the 
allowance for the attenuation effects in a material are 
widely employed.1  The density of a material is usually 
the main parameter, sought and the attenuation of 
radiation at multi-aspect radioscopy, e.g., X-raying, is 
the measured quantity.  The attenuation is supposed to 
vary in proportion to integral density of a material at 
the wave paths.  Considerable success of the theory and 
tomographic technology has become possible due to 
efficient inversion methods of the wave projections by 
use of transforms of Radon and Abel-type and the so-
called convolution methods.1–6  The majority of 
tomographic methods, use an outside of radiation 
source with given parameters to expose the media.  
This corresponds to active tomography.  Natural 
emission of a material is used in passive tomography.  
It arises, for instance, under heating or other 
excitation.  The action of external radiation often leads 
to irreversible changes in the material studied, so 
passive methods attract more interest.  In particular, 
they are ecologically more safe. 

One of the well-known examples of passive 
tomography is the thermography aimed at 
determining temperature inside a medium.  It is used 
for solving some technical and biomedical problems.7  
In particular, information about the temperature 
change of internal organs helps early diagnostics of 
various deseases, the control of internal temperature 
is also necessary in hyperthermia, oncology, etc.  
Radioemission and IR radiation are widely used in 
thermomapping.  Thermomapping can be applied to 
remote sensing of fires.  Methods of passive 
tomography will also be useful for making 
radiometric analysis of microwave radiation 
accompanying the appearance of radioactive elements 
in the atmosphere under radioactive contamination.  
The problems of incoherent scattering of radiowaves 
in the ionosphere and troposphere can be reduced to 
application of passive tomography methods.  The 

number of possible applications of passive 
tomography can significantly be increased. 

In spite of the importance of this kind of 
tomography, mathematical apparatus for it is not so 
well developed as for active tomography.  It is often 
impossible to write the exact solution, and the 
problem is to be reduced to an ill-posed system of 
linear algebraic equations.1,7,9  The arising difficulties 
are connected first of all with the fact that, in 
contrast to active tomography, the spatial intensity 
distribution of the radiation is unknown and it is to 
be sought.  Besides, in passive methods, one has to 
use incoherent low-intensity radiation irregularly 
varied in time what excludes the possibility of using 
a priori information about radiation and makes it 
difficult to reliably reconstruct the structure of the 
object sounded. 

However, it should be noted that the 
distinguishing between passive and active 
tomography is rather schematic because the case of 
passive tomography can be considered as the case 
with radiation from active sources distributed with 
unknown density inside the object studied.  These 
problems can be generalized in some form.  A 
generalized procedure for obtaining the basic 
equation for different tomographic problems is 
presented in Ref. 9.  The similarity of the integral 
relations causes possible similarity of the methods 
used for their solution.  Modern tendencies in the 
development of passive methods is to generalize well-
developed methods of active tomography. 

A step in this direction is made in this paper by 
an example of reconstructing structure of an object 
without axial symmetry.  The initial equation 
obtained is shown to be similar to Abel equation 
widely used in active tomography.  We analyze a 
possibility of generalizing the well-known solutions.  
We also propose an alternative method for solving 
the inverse sounding problem based on reduction of 
an integral equation to an equation of the 
convolution type.  The equation obtained makes it 
possible to use fast numerical algorithms and well-
developed regularization methods. 
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2. THE INTEGRAL EQUATION OF PASSIVE 
TOMOGRAPHY 

 
Let us consider a two-dimensional problem of 

passive tomography for an object with incoherent 
distribution of the intensity of natural radiation of a 
weakly absorbing medium. 

It is necessary to reconstruct the distribution 
from the results of scanning by measuring radiation 
intensity as a function of azimuthal angle ψ (Fig. 1).  
The weak absorption approximation means that the 
attenuation of radiation occurs mainly because of 
spherical divergence.  The position of the reception 
point with respect to the volume studied is set by 
angle θ determining the direction of observations. 

 
FIG. 1. 

 
The value of full power P of radiation coming to 

the observation point from a volume with spatial 
intensity distribution I(ρ, ϕ, z) is defined by the 
following expression in cylindrical coordinates 

P = ⌡⌠
–∞

∞
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 I(ρ, ϕ, z) ρ dρ dϕ dz

⎜R0 – ρ⎜2  , 

where R0 is the distance from a center of the volume 
to the reception point; ρ0 = R0sinψ is the sighting 
distance.  Considering the radiation intensity 
constant with respect to the z coordinate and taking 
the integral over ψ instead of the integral over ϕ, we 
obtain the following expression for the power 
received from the direction ψ: 

P(ρ0, θ) = ⌡⌠

ρ0

∞

 

 ρ dρ

ρ2 – ρ0

2 [I(ρ, ϕ1) + I(ρ, ϕ2)] ,  (1) 

where ϕ1 and ϕ2 are two different solutions of the 
equation R0 sinψ = ρ sin(ϕ – θ + ψ) . They correspond 
to the angle between the current radius of the point in 
the medium and the direction from which the angle θ is 
counted off (see Fig. 1): ϕ1 < π/2 – ψ, ϕ2 > π/2 – ψ.  The 
expression (1) is the Volterra integral equation of the 
first kind for the density distribution function I(ρ, ϕ). 

To reconstruct the two-dimensional structure of 
the object in the cylindrical coordinates, let us expand 
the measured and unknown functions into a Fourier 
series over circular harmonics. Then Eq. (1) takes the 
form 

Pn(ρ0) =  

= 2 

⌡⌠

ρ0

∞

 

 

In(ρ) exp(i n(π/2 – ψ)) 

dρ

1 – (ρ0/ρ)
2

 Tn(ρ0/ρ) ,  (2) 

where Tn(x) = cos(n arccosx) is the Chebyshev 
polynomial of the first kind of the nth order.  After 
inversion of Eq. (2) the unknown two-dimensional 
distribution of radiation intensity can be obtained by 
inversion of the Fourier series for the coefficients In 

I(ρ, ϕ) = ∑
n = –∞

∞

  In(ρ) ei n ϕ . 

When determining the internal structure of a 
medium with axial symmetry, only one direction of 
observation is sufficient.  This corresponds to the 
case n = 0, and Eq. (2) becomes the well-known Abel 
equation. 

The above derived expression (2) is similar to 
the integral equation arising in active tomography 
when determining the unknown density of a 
material.1,10  The difference is in the factor åinψ under 
the integral sign.  It takes into account the curvature 
of the wave front caused by finiteness of the distance 
from the reception point to the radiation volume.  
The similarity of the equations confirms the 
similarity of active and passive tomography. 

 
3. SOLUTION OF THE TOMOGRAPHIC 
PROBLEM BY THE METHOD OF 

CONVOLUTION EQUATION 

 
At present, three solutions of the integral equation 

(2) are known.  Two of them are called causal and 
noncausal. They are reduced to an integral transform of 
a given function with a kernel containing Chebyshev 
polynomials of the first or second kind.10  The 
noncausal solution has some advantages in comparison 
with the causal one as its kernel has no singularity near 
the integration boundary. Algorithmization of these 
solutions is connected with the necessity to choose a 
variable integration step with more detailed calculation 
of the integrand near the coordinate origin. This 
involves a hidden instability of the solution to 
measurement errors and does not allow one to 
accelerate the process of internal structure 
reconstruction significantly. The third method based on 
Mellin’s transform has similar shortcomings but there 
is an effective regularization for it.  However the rate 
of calculations does not increase. 

Another method significantly accelerating the 
calculations can be applied to the solution of the 
equation (2).  Let us make the substitution of 
variables 
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ρ0 = a e
τ0 ,   ρ = a e

τ
 ,  (3) 

where a is a constant.  The equation will take the 
form 

P
∼
(τ0) = ⌡⌠

–∞

∞

 

 

I
∼
(τ0) Q(τ0 – τ) dτ .  (4) 

Here 

I
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P
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Q(t) = 
2 Tn(e

t)

sinh(–t)
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and χ(t) is the Heaviside step-wise function. 
The equation (4) is an integral convolution 

equation for which regularization tools are well-
developed.9  For instance, by use of the Fourier 
transform, the solution can be written in the form11 

I
∼
(ω) = P

∼
(ω) Q*(ω) [Q*(ω) Q(ω) + α(ω2 + 1)] 

–1 , (5) 

where I(ω), P(ω), and Q(ω) are Fourier transforms 
of the corresponding functions, α is the regularization 
parameter, and * denotes the complex conjugation.  
The function P(ω) can be obtained by the Fourier 
transformation applied to experimental data.  The 
expression for the function Q(ω) can be obtained 
analytically12: 

Q(ω) = 2 ⌡⌠
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Here Γ(ω) is the gamma function.  To obtain the 
solution, it is sufficient to take the inverse Fourier 

transform of the function 
∼

I(ω) and make the 
substitution of variables inverse to Eqs. (3). 

The advantage of the method of convolution 
equation proposed is the possibility of using the 
Fourier transform for which there is an effective 
algorithm known as the fast Fourier transform 
(FFT).  The analytical representation of the Fourier 
transform of the kernel of the integral equation also 
favors the decrease of the level of reconstruction 
errors.  Besides, the proposed method realizes the 
change of discretization step in a way more 
convenient for exact integration.  An adaptive step 
with respect to the variable ρ0 is provided by the 
equidistant step of integration.  Near the coordinate 
origin, the integral is calculated with a smaller step; 
the step increases with the increase of the sighting 
parameter.  Finally, the use of regularization in 

Eq. (5) allows one to avoid additional efforts on 
improving solution stability under the presence of 
measurement noise. 

 
4. IMITATION SIMULATION 

 
In order to verify the solution proposed, the 

angular distribution of radiation intensity of a 
cylindrical source was imitatively simulated.  The 
cylinder of radius R was displaced by a distance b from 
the coordinate origin at an angle β.  If the distribution 
density of the sources is uniform inside the cylinder, 
the received power function of the angle is expressed, 
according to Eq. (1), analytically in the form 

P(ρ0, θ) = 2 a2 – c2 sin2(y – a) χ(a – c sin(ψ – α)) , 

where c
2

 = b
2
+ R

2

0 – 2bR0sin(θ – β); sinα = b/c cos(θ – β).  
A combination of enclosed cylinders of different 
intensity makes it possible to simulate different 
variants of the density distribution of radiation 
sources.  Under real conditions, function P(ρ0, θ) 
will be given by measurements. 
 

 
 

FIG. 2. 
 

Figures 2 and 3 present examples of intensity 
distribution reconstruction for a source with 
decreased (I = 0) and increased (I = 2) concentration 
inside the cylinder with I = 1.  The calculation was 
performed for R0 = 9.  The parameters of the 
external and the internal cylinders were chosen as 
follows: a1 = 3, b1 = 2, β1 = –45°, a2 = 1, b2 = 1, 
β2 = –45°, respectively.  The reconstruction was 
performed using 32 observation directions and 64 
samples over the azimuthal angle ψ.  The algorithm 
was simple enough to realize it in the MathCAD 
integrated system.  The shape of the distribution is 
reconstructed completely.  The errors of solution 
manifest themselves by blurring of boundaries with 
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different radiation source intensity in the 
representation of its distribution by isolines. 

 

 
 

FIG. 3. 
 

It should be noted that the accuracy of 
reconstruction of the image can be essentially 
improved by increasing the number of observation 
directions and samples; finally, it is determined only 
by measurement noise.  This noise did not exceed –
30 dB in the imitative simulation performed. 

 
5. CONCLUSION 

 
An integral equation similar to the equation in 

the active tomography problem with the use of an 
external radiation source was obtained on the basis of 
multi-aspect analysis of spatial distribution of the 
natural incoherent radiation of the medium in the 
case of weak absorption.  A possibility of using 
known solutions is discussed and another method of 
 

inversion of the initial equation is proposed.  The 
method is based on reduction to an integral equation 
of a convolution type.  The algorithm of its solution 
is distinguished by structural simplicity and 
possibility to increase the realization rate by using 
fast Fourier transform.  Its high accuracy is 
confirmed by results of imitative simulation.  The 
new method can be applied for a more exact and fast 
reconstruction of the internal structure of objects in 
the problems of both passive and active tomography. 
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