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The multidimensional phase modulation of a light wave is performed in 
adaptive optics, probably for the first time.  In this connection exist the 
necessity of formal definition of a phase in the spatiotemporal area.  With 
that end in view the concept of the analytic signal is developed in this paper.  

 
1. INTRODUCTION 

 

The representation of an oscillation or wave 
process in the form of two functions namely the 
amplitude and the phase requires a non–contradictory 
definition of these concepts.  The wave equation or 
equation, describing the oscillation, does not contain 
such a definition.  Therefore some additional reasoning 
are necessary.  There are only few papers2,3,5–8,9,12,14,15–

17,20,26–31 in which the definition problems of the 
amplitude and the phase are considered for the one–
dimensional oscillation.  

There are various ways of introducing the 
amplitude and the phase.  Analysis of these ways was 
conducted in Refs. 6, 8, 31. The conclusions can be 
formulated as follows:  

– All definitions give identical result for 
harmonic oscillations, the sine and cosine, and this is 
a necessary condition of the definition correctness.  

– The results of various ways of definition do 
not coincide for narrow-band signals.  This 
discrepancy reduces with the reduction of relative 
width of the signal frequency band. 

– The most general definition of the amplitude 
and the phase can be introduced using the Gabor's 
analytic signal (ÀS).2 

For a given real function U(x) the analytic 
signal W(x) is a complex function,  

W(x) = U(x) + iV(x) , 

V(x) = 
1
p v.p. ⌡⌠

–∞

∞

 
 U(s)
x – sds = H

x
U(x).  (1) 

Here the improper integral is determined as the Cauchy 
principal value (v.p.) when s tends to infinite and x 
equals �s.  V(x) is the imaginary part of the AS.  It is 
Hilbert transform of its real part U(x), and the 
operator of the Hilbert transformation over argument x 

is H
x

 . Then the amplitude and the phase are calculated 

in a usual way 

a(x) = U2(x) + V2(x) ,    ϕ(x) = arctan 
V(x)
U(x) . 

In Ref. 31 it is shown, that the operator H is 
the unique linear operator, for which the following 
equality holds: 

H
x

 cos(αcx + ϕî) = sin(αcx + ϕî) , 

where αc > 0 and ϕo  are unknown constants, having 
the meaning of the carrier frequency and the initial 
phase.  Therefore, the definition of the amplitude and 
the phase is made in the same way for signals with 
different frequency spectra.  

The Hilbert transform is equivalent to 
multiplication in the frequency domain by the sign 
function: 

H
x

 U(x) = ⌡⌠
–∞

∞

 
 sgn αe–iαxdα ⌡⌠

–∞

∞

 
 U(y)eiαxdy .  (2) 

therefore, the Fourier transform of an analytic 
signal W(x) occupies only one half of the 
frequency axis thus being the one–sided or causal 
transform.  

The important property of ÀS application for the 
theory of modulation26 is the possibility of separating 
out the amplitude–modulated signal at low-
modulation frequency using the formula 

H
x

 Ω(x)U(x) = Ω(x) H
x

 U(x) ,  (3) 

here Ω(x) and U(x) are real functions, their 
Fourier transforms do not overlap in the frequency 
domain, and U(x) exists at higher–frequencies than 
Ω(x).  Other properties of the Hilbert transform 
are discussed in Refs. 4, 6, 8,  15. 

The optical wave is the four–dimensional 
function and it creates a problem for application of 
the AS.25,31  There arise questions, for which of the 
coordinates the Hilbert transform should be done, 
when it is possible and in what features various 
analytic signals, thus arising, will correspond to 
one another.  The preservation of uniqueness of the 
phase definition causes the necessity of 
generalization of the analytic signal concept to the 
multidimensional case. 
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In this paper we numerically study the definition 
of the amplitude and phase by the analytic signal and 
compare the amplitude and the phase of the normal 
random process, determined by the AS when 
αc �>�Δα, with the amplitude and the phase of the 

same process at moving its spectral bands to zero 
frequency and the subsequent exchange. 
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FIG. 1. Estimates of the discrepancies εϕ (Fig. 1a) 
and εa (Fig. 1b) between the phase and the 
amplitude of a complex function determined in the 
experiment and calculated using the analytic signal 
as functions of the carrier frequency.  The rms 
deviations are shown as the confidence intervals. 
 

Spectral bands occupied, in the frequency 
domain, the intervals of 20 read–outs, with the total 
number of read–outs of this process N being equal to 
256.  The carrier frequency αc ∈[−14, +14], and the 
Nyquist frequency is equal to 128.  The estimates are 
calculated as the average quotient of the norms in the 
space L

2
(N) by the formulas 

 

εa = ∑
i = 1

N

 (ai – a~i)
2/ ∑

i = 1

N

 ai
2 , 

ε
ϕ
 = ∑

i = 1

N

 (ϕi – ϕ~i)
2/ ∑

i = 1

N

 ϕi
2
 , 

where ai and ϕ
�
i are the read–outs of the amplitude 

and the phase of the initial process, and a~i, j~i are 
the

 

corresponding read–outs of the process with a 
varying position of the spectral bands. 

The results of the experiment are shown in 
Fig. 1.  It is seen, that the estimate εa is equal to 
zero, when the spectral bands do not involve the 
point α = 0. Hence the amplitude is invariant relative 
to sign of the carrier frequency, whereas the phase 
changes its sign and the estimate εϕ changes its value 
from zero to two.  If the point α = 0 falls inside a 
spectral band, the estimate εa differs from zero, and 
εϕ takes an intermediate value between zero and two.  

Thus, the possibility of using the analytic signal 
becomes problematic for the amplitude and phase 
definition, when αc ∼ Δα.  Such situations usually 
take place in the interferometry, when the 
interference fringes essentially change their widths 
and curvature, when they have a ring shape.  
 

2. THE FUNCTION CLASS FOR A MODEL 
REPRESENTATION OF THE WAVE 

 

The basic property of the mathematical model, 
i.e. its applicability to research, is in many respects 
defined by properties of the functions from which 
model is composed.  When choosing a class of 
functions for representation of the physical process 
we shall pay attention to two circumstances.  The 
first is a univalent representation of the wave 
function and the interferogram by a discrete series of 
read–outs, necessary for making numerical analysis.  
Secondly, the existence of the Hilbert transform, by 
which the AS is introduced.  

The representation of functions in the form of a 
discrete series of read–outs is performed on the basis 
of Kotel’nikov theorem if the function has the finite 
Fourier transform.  

Under the Paley–Wiener theorem for quadratic 
integrable functions or the Paley–Wiener–Schwarz 
theorem,15 if the spectrum has a singularity in the 
form of δ – functions and their derivatives, the 
functions having a finite spectrum are entire 
analytical functions of the exponential type (EFET).  
Moreover, if one considers only functions limited on 
the real axis, such EFET will be the function of a 
class "À", Ref. 4 or a class "B", Ref. 22.  

Because of the EFET limitedness its Fourier 
transform or the spectrum are absolutely integrable 
including the case, when this EFET is not 
quadratically integrable.  The reverse statement is also 
true and as the Hilbert transform of EFET does not 
infringe the absolute integrability of its spectrum, the 
Hilbert transform also will be a limited function.  The 
Hilbert transform exists also for the functions with 
continuous derivative, and for a more wide class of 
functions, which satisfy the Hölder condition,31 but 
because of the necessity of discrete representation these 
classes of functions are inapplicable here. 
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Let us now find the consequences of using the 
entire function for the representation of an 
interference pattern.  The theorem from Ref. 1 allows 
the difference module between a real continuous 
function U(x) and its approximation EFET from the 
class "À" to be an arbitrary small value for all x, if 
 

lim
p ® ∞

sup 
log M(p)

log p  = 0, 

 
where 
 
M(p) = max |U′(x)|   at |x| < p .  (4) 
 

From this expression restrictions on the growth 
of the amplitude and the frequency of the 
interference fringes follow.  This growth should not 
be more or less, than any power of x at x → ± ∞.  

It is known a priori that the width of the spatial 
frequency spectrum and the temporal spectrum of a 
parabolic and quasi–monochromatic wave function 
U(x, y, z, t) is narrow. That is 
Δω /ωñ << 1, Δα /αñ << 1, where ωñ is the carrier 
frequency, and Δω  is the half–width of a temporal 
spectrum; αñ is the carrier frequency, and Δα  is the 
half–width of a spatial frequency spectrum.  

These properties of a light wave can be most 
naturally expressed, if U(x, y, z, t) is the entire 
exponential function of each variable.  Thus the 
physical properties namely the monochromaticity and 
the parabolicity are transferred to the wave 
approximation U(x, y, z, t).  The approximation is 
not already the exact solution of a wave equation. 
However there is no necessity in such a solution since 
the concepts of the amplitude and the phase exist 
only in connection with their measurement or the 
definition and do not follow from a wave equation. 
 

3. THE WAYS TO INTRODUCE  
THE ANALYTIC SIGNAL 

 
Let us now consider the particular solution of a 

scalar wave equation, describing the propagation of a 
quasimonochromatic wave in a homogeneous medium 
along the positive direction of the z-axis, which can 
be written as 

W(x, y, z, t) = 

= ⌡⌠
0

∞

 
 dω ⌡⌠

–∞

∞

 
 
⌡⌠
–∞

∞

 
 S(α, β, ω) exp i(αx + βy + γz – ωt) dαdβ , 

(5) 
where α, β, γ = (k2 – α2 – β2)1/2  are the spatial 
frequencies, ω  is the temporal frequency, and 
k = 2π / λ = ω /c is the modulus of the wave vector, 
ñ is the speed of light, S(α, β, ω) is a spatiotemporal 
spectrum in the plane z = 0.  The sign of the spatial 
frequency γ is chosen, as it is known,10,18 from the 
condition of damping of the evanescent waves at  

z → + ∞, and the sign of the frequency ω from the 
condition that the wave front moves in the same 
direction. 

Such a representation is sufficient for describing 
light propagation process in an optical system, for 
example, in an interferometer. The frequencies γ  and 
ω do not change the sign, therefore, the function 
W(x, y, z, t) is the AS of the variables z and t.  The 
invariance condition of the sign can be violated 
because of the occurrence of some waves, reflected 
from surfaces of the optical system and propagated 
toward to the main wave.  However, shall consider 
the amplitude of the reflected wave to be negligible, 
since the optical system allows the separation of the 
reflected wave from the direct wave in the spatial 
frequency region α, β.  

 
The Analytic Signal on a Plane 

 
It is interesting to analyze fields in a recording 

plane, normal to the z–axis.  When the variables z 
and t are fixed, the spectrum S(α, β, ω) in the 
general case and for all ω will be localized around of 
the coordinate origin in the plane αβ�, and 
consequently the function W(x, y, zo, to) is not the 
AS in some cross–sections of the plane xy.  

Let us turn the recording plane around the x–
axis and y–axis at the point (0, 0, zo) at some angle   

θ normally to the vector {η, ζ, 1 – η2 – ζ2} . 
In this new plane p(x, y, z) coordinate z already 

is not fixed, it changes according to the equation 

z = zî – 
ηx

(1 – η2 – ζ2) – 
ζy

(1 – η2 – ζ2) 

by substituting it in Eq. (5), we obtain 

W(p, t) = 

=⌡⌠
0

∞

 
 dω ⌡⌠

–∞

∞

 
 
⌡⌠
–∞

∞

 
 S(α, β, ω)exp i[(α)x+(β)y+γzo – ωt) dαdβ, 

(6) 
where 

(α) = α – γη/ 1 – η2 – ζ2 , 

(β) = β – γζ/ 1 – η2 – ζ2 . 

The angle θ and the projections η and ζ of the 
normal vector, connected with it, can be chosen of 
such a size, that the factors (α), (β) at the variables 
x and y do not change the sign, for example, at 

η = ζ < –b/k ,  (7) 

where b = max (|α|,|β|), for S(α,β,ω) ≠ 0.  Therefore, 
the functions cos (α)x and sin (α)x, cos (β)y and 
sin (β)y are connected with each other by the Hilbert  
transform over x and y accordingly, and the function 
W(x, y, z, t) in the plane p(x, y, z) is the analytic 
signal of x and y, Eq. (6).  
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Let us estimate numerically the angle θ, 
necessary to obtain a given resolution in the 
recording plane, for λ = 0.63⋅10–3 mm, k ≈ 104 mm–1, 
at ζ = η, having in mind the ratio 
η = 2π cos θ/λ = 2π/τ, where τ is a spatial period of 
the wave in this plane.  The results are given in 
Table I. 

 
TABLE I. 
 

η /π, mm–1
 ≈ 2000 ≈ 400 

200 100 

k2 /η2
 ≈ 2.6 ≈ 62 ≈ 256 

1000 

τ, mm 

0.001 0.005 0.01 ≈ 0.0
2 

θ, ° ≈ 51 ≈ 83 ≈ 86 ≈ 88 
 
From this table it is seen, that the angle θ is 

close to 90° within the framework of the 
geometrical optics.  Such an angle can be realized 
in the optical systems for a large number of 
applications, for example, in the interference 
testing of an optical surface.  Experimentally the 
angle θ is chosen to be of such a value, that the 
light beam, incident on a recording plane, is on the 
one side from some normal to this plane.  It 
provides the causality condition for the angular 
spectrum of the function W [p(x, y, z), t].  
 

The Analytic Signal on a Line 
 

Let the parametric equations of a line l(t) in the 
three–dimensional space be 

⎩
⎨
⎧
 
x = xo + vx(t)t ,
y = yo + vy(t)t ,
z = zo + vz(t)t .

 

Let us elucidate under which conditions the 
wave is the analytic signal on this line. Having 
substituted the parametric equations in Eq. (5), we 
obtain that 

W [l(t)] = 

=⌡⌠
0

∞

 
 
dω ⌡⌠

–∞

∞

 
 
⌡⌠
–∞

∞

 
 S(α, β, ω) exp i[(°)t – ωt + ϕαβ]dα dβ, (8) 

where 

(°) = αvx(t) + βvy(t) + γvz(t),   ϕαβ = αxo + βyo + γzo . 

Let us assume that η = max (|α|, |β|, |γ|) at 
S(α, β, ω) ≠ 0, v = max (|vx(t)|, |vy(t)|, |vz(t)|) and 
then we find that max |(°)| < 3ηv.  Let us show using 
a numerical example, that 
q = 3vη/ωc = 3v cos θ/c < 1, at Δω/ωc << 1, where ωc 
is the carrier frequency of the temporal spectrum, 
Δω  is a half–width of the temporal spectrum.  The 
initial data and the results for a wave scanning in a 
frame are shown in Table II. 
 
 

TABLE II. 
 

Size of the frame, cm   1×1 

Number of lines in the frame  3 ×104
 

Scanning time of the frame, sec  1 ×10–3
 

θ, ° 51  

Speed of light in the vacuum, 
cm/sec 

 3 ×1010
 

The common length of the scan, 
cm 

 3 ×104
 

Scanning speed v, cm/sec  3 ×107
 

cosθ 0.63  
q ≈ 

 2 ×10–3 
 
From the estimate for q obtained follows the 

inequality (°) – ωc < 0. It is obvious, that some 
acceptable scanning parameters of the frame can also 
be selected for the interval (ωc ± Δω). 

Thus, the factor at the variable t in Eq. (8) does 
not change the sign, and the function W [l(t)] is the 
analytic signal on a line with the parameter t.  
 

The Analytic Signal in the Interferogram 
 

Not being an analytic signal, the field can 
receive this property due to interference. Let us 
consider a two–dimensional interference pattern 
G(x, y) of the analyzed field with the unit plane 
reference wave: 

G(x, y) = |W(x, y, zo, to) + exp i(ηx + ζy)|2 = 1 + 

+ |W(x, y, zo, to)|
2 + W*(x, y, zo, to) exp i(ηx + ζy) + 

+ W(x, y, zo, to) exp –i(ηx + ζy) .  (9) 

As well as in the previous case, it is necessary to 
choose the values η, ζ according to Eq. (7).  The 
inclination of the reference wave front related to 
them, will transform into a displacement of the finite 
spatial spectrum of two last components in Eq. (9), 
which are the conjugate analytic signals of both x 
and y coordinates.  
 

The Amplitude of the Analytic Signal and  
the Envelope of the Parametric Function Family 

 

The solution of the wave equation for vacuum 
Eq. (5) can involve a multiplicative constant, for 
example, in the form exp iϕo.  The change of the 
initial phase ϕo creates the parametric family of the 
functions W(x, y, z, t)exp iϕo.  The functions of the 
family may have real envelope à(x, y, z, t), which 
contacts them at some points and does not depend on 
the initial phase. 

Let us find the relation between the envelope 
and the amplitude of the field.8,19  When finding the 
envelope11 it is necessary to solve the system of 
equations 
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⎩
⎨
⎧
 
Re [W(x, y, z, t) exp iϕo] = a ,
ä

äϕo
 Re [W(x, y, z, t) exp iϕo] = 0 . 

 

Having substituted expression (5) in the second 
equation of the system and taking derivatives, we 
shall find 
 

⎩
⎨
⎧
 
Re [W(x, y, z, t) exp iϕo] = a ,
Im [W(x, y, z, t) exp iϕo] = 0 . 

After multiplication of the second equation by 
the imaginary unit and summing it with the first one 
we obtain the square of a modulus of a sum as the 
solution of the system 
 

a2(x, y, z, t) = |W(x, y, z, t)|2. 
 

For the monochromatic wave time t can be a 
parameter of the family.  Having excluded from 
Eq. (5) the integration over the frequency ω, we can 
obtain the system of equations for the envelope 

 

⎩
⎨
⎧

 

⌡⌠
–  ∞

∞

 
  ⌡⌠
–  ∞

∞

 
 | S(α, β)| cos [αx + βy + γz – ωt + arg S(α, β)] dα dβ = a ,

⌡⌠
–  ∞

∞

 
  ⌡⌠
–  ∞

∞

 
 | S(α, β)| sin [αx + βy + γz – ωt + arg S(α, β)] dα dβ = 0 .

 

 
 

Similarly to the previous case we obtain the 
solution a2(x, y, z) = |W(x, y, z)|2.  The square of 
the parametric family envelope does not in this case 
depend on time as the intensity of the field.  

Thus, the envelope and the amplitude of the AS 
are identical in the above considered cases, but the 
possibility of parametrization is limited by the 
physical properties of the problem, by the wave 
equation. In a particular case this property is 
monochromaticity, in a more general case it is the 
absence of passive medium and sources. 
 

4. INTERRELATIONS OF CAUSALITY  
OF FOURIER TRANSFORM OF A COMPLEX 
FUNCTION AND MONOTONIC BEHAVIOR  

OF ITS PHASE 
 

By analyzing a recorded interference pattern, for 
example, the expression (9), without the account for 
the process of its obtaining, one can hardly find out, 
whether the field W(x, y) has the causal spatial 
spectrum, especially when the interference fringes are 
curvilinear and have variable width.  Having in mind 
that the shift of a spectrum in the frequency region is 
equivalent to addition of a linear function to a signal 
phase, we connect the causality of a complex 
function spectrum to the monotonicity of its phase.21  
The monotonic property manifests itself in the 
experiments in the fact that the interference fringes 
have full profiles in the linear cross–sections of the 
interferogram. 

Let us take the Bernstein inequality13,21: 

max ⎪
⎪

⎪
⎪dW(x)

dx  ≤ Δα max |W(x)| ,  (10) 

here the function W(x) = a(x) exp iϕ�(x) belongs to a 
class of functions with a finite spectrum, Δα is the 
halfwidth of the spectrum.  

Let a(x) = const, then we find max |ϕ′(x)| ≤ Δα. 
According to the theorem on the shift of a spectrum in 
 

the frequency region the function exp i[ϕ(x) + Δα x] has 
the causal spectrum, and from the Bernstein 
inequality it follows that ϕ(x) + Δα x is obviously a 
monotonic function.  That is causality is a sufficient 
condition of monotonicity. Therefore, cases are 
possible, when the monotonicity is present, but the 
causality is not present. 

We consider the case, when a(x) ≠ const. From 
Bernstein inequality we obtain 

Δα2 ≥ 
max [a′2(x) + a2(x) ϕ′2(x)]

 max a2(x)  ≥  

≥ 
max [a2(x) ϕ′2(x)]

 max a2(x)  = r2 max ϕ′2(x) , 

where r2 ≤ 1, then Δα ≥ r max |ϕ′(x)|.  The latter 
inequality allows three situations: the causality 
without monotonicity, the monotonicity without 
causality, and the presence of both properties.  
 

The Dispersion Causality 
 

Let us now elucidate which statement is true for 
the functions that, probably, have no finite spectrum.  
Let us define the half-width of the Fourier spectrum 
S(α) for the function W(x) in a dispersion sense23  

Δα2 = ⌡⌠
– ∞

∞

 
 |S(α)|2(α – αc)

2 dα = 

= 
1
2π ⌡⌠

– ∞

∞

 
 {a2(x)[ϕ′(x) + αc]2 + a′2(x)} dx . 

We assume that αc = 0 and obtain the estimate 
Δα2 ≤ A2 max ϕ′2(x) + B2, where 

A2 = 
1
2π ⌡⌠

– ∞

∞

 
 a2(x) dx ;   B2 = 

1
2p ⌡⌠

– ∞

∞

 
 a′2(x) dx . 
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Let, without loss of generality, A2 = 1, then the 
spectrum of the function: 

a(x) exp i {ϕ(x) + x B2 + max ϕ′2(x)} 

is causal in the dispersion sense, and its phase is a 
monotonic function, as it follows from the inequality: 

Δα < B2 + max ϕ′2(x) > max ϕ′(x). 

Hence, at a reasonably large linear phase shift 
the monotonic behavior and the dispersion causality 
are observed in common.  

Let a(x) = const, ϕ′(x) ∈ L2 . We find 
max ϕ′(x) > Δα, therefore, the monotony at the 
assumptions made is the sufficient condition of the 
dispersion causality, including the case when 
ϕ(x) ∈ L2(T) and W(x) ∈ L2(T), and they are the T-
periodic functions.  
 

Conditional Monotony  
 

The cosine function, entering in the expression 
for interferogram, is even and periodic.  Therefore, 
nonmonotonic phase can give the same interference 
pattern, as a monotonic one.  Let xo be an extreme 

point of the phase, then cos Φ(x) = cos F~(x), where  

F~(x) = 
⎩
⎨
⎧
 
± Φ(x) , x £ xo ,
2πn ± Φ(x) , x > xo,  n = 0, 1, 2, ...  . (11) 

Even if the phase F~(x) is discontinuous at the 
point xo, its derivative remains continuous and 
limited in modulus by the same value, as Φ(x).  The 
phase functions determined by Eq. (1) we call 
hereinafter as the conditionally monotonic.  

 
Numerical Experiment  

 
The conformity of causality and monotony was 

investigated numerically.  Using a random number 
generator with the normal distribution we 
generated a periodic discrete samples of the analytic 

signal Wk = {Uk + i Vk}exp i αck at αc = +15, 
k ∈ [1, N], N = 256.  Then the carrier frequency αc 
changed in the range from + 15 up to –15 with the 
unit step.  For each value of the carrier frequency 
the estimates of the degree of the phase monotony 
pm and the causality degree pc we then calculated 
their average values over thirty realizations of the 
random process Wk.  To do this we used the 
following expressions: 

pm = ∑
k = 1

N – 1

 + p
2

k – – p
2

k / ∑
k = 1

N – 1

 + p
2

k + – p
2

k , (12) 

+ p = 
⎩
⎨⎧ 

0 , pk < 0
pk, pk > 0,         –p = 

⎩
⎨⎧ 

0 , pk > 0
pk, pk < 0,  

pk = arg Wk+1 – arg Wk , 

pc = 
⎝
⎜
⎛

⎠
⎟
⎞

∑
k = 1

NN

 |Sk|
2 – ∑

k = NN + 1

NN

 |Sk|
2  / ∑

k = 1

N

 |Sk|
2 , 

where NN = N/2 + 1 is the Nyquist frequency, and 
Sk is the discrete spatial spectrum. 

Figure 2a shows the results of the experiment 
for the case, when the process Wk has undergone 
both the phase, and amplitude modulation.  Its 
spectral density is constant and not equal to zero in 
the frequency interval [αc

 

− 4, αc
 

+ 4]; outside this 
interval the spectral density is equal to zero.  In 
Fig. 2b the results of studying of purely phase 
process, when ⎥ Wk ⎢= const, are shown.  The spectral 
density of the process visually is in the same interval, 
but its width and shape were not controlled.  

1
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FIG. 2.  The estimates of the causality degree pc, 
see open circles ( –

∞
– ) and the monotony degree 

pm, see black circle ( –�– ).  (a) is the signal with 
a finite spectrum and amplitude–phase modulation, 
(b) is the signal with phase modulation.  As a 
confidence intervals we show the rms deviations of 
the corresponding functions. 

 
The analysis made and the numerical experiment 

revealed four typical situations.  
The first shows that the causality and monotony 

are observed simultaneously. It is true for the functions 
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with only phase modulation, and for those 
modulation, as well with the amplitude–phase.  
We have in this case that αc > Δα, W(x) is an ÀS, 
αc ∈ [−15,−5] ∪ [7,11] in Fig. 2a.  

In the second situation the complex function 
W(x) has the causal spectrum, it is an ÀS, αc > Δα, 
but its phase is not monotonic. It is observed with 
functions having the finite spectrum and 
amplitude–phase modulation, αc ∈ [−15, −5] ∪ [4, 15], 
Fig. 2a. 

In the third situation W(x) has not monotonic 
phase and it is not an ÀS, αc < Δα.  But, if the 
interference fringes have full profile, the function 
W(x) has the conditionally monotonic phase.  

And finally, the fourth situation is in the 
absence of the causal spectrum for the function 
W(x), it is not an ÀS, but its phase is a monotonic 
one, αc < Δα, αc ∈ [−9, −5] ∪ [5, 7], Fig. 2b.  

The first and second situations are the most 
convenient for application of the algorithms, based 
on the Hilbert transform, and the experiment 
should be arranged so that these situations occur.  
But the cases, in which no causality spectrum  

occurs and there is the monotony or conditional 
monotony of the phase, are not lost.  We pass to 
consideration of this question.  

 

5. TRANSFORMATION OF THE COMPLEX 
FUNCTION WITH THE MONOTONIC PHASE 

IN THE ANALYTIC SIGNAL 
 

The monotony enables one to increase the degree 
of causality of a spectrum and to improve the estimates 
of the phase.  Let the function W(x) = a(x) exp i Φ(x) 
which has a monotonic phase Φ(x), but is not an ÀS.  
If to transform the variable x so, that Φ[x(τ )] = αcτ, 
then the spectrum of function W(τ ) will become 
considerably narrower and located in the vicinity of the 
point α = αc. 

The width of this spectrum relative αc, without 
the account of the transformation errors, is determined 
only by the amplitude a(τ), which changes a little bit 
as compared with a(x), if the last is low–frequency.  
At a(x) = const, the function W(x) is causal in the 
dispersion sense, and the transformed function W(τ ) 
will be a harmonic fluctuation with the frequency αc. 
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FIG. 3.  The extension–compression transformation of a signal with a monotonic phase: the initial signal,  
(– – – – ), and signal after transformation, (⎯⎯) (a); normalized phase, (– –�– –), and normalized 
inverse phase of the initial signal, (–

∞
–), (b); the spectrum of the initial signal, ( –�– ), and the spectrum of 

the transformed signal, (–
∞
–) (c). 
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Such an extension–compression transform may 
be take place according to the expressions 

 
cos Φ(x) → cos Φ[Φ–1(αcτ)] = cos αcτ , 

H
t
 cos αcτ = sin αcτ → sin Φ(x) , (13) 

 
where Φ–1 is the inverse function of Φ.  The 
uniqueness of this inverse function is provided by the 
monotony of the direct function.  If, in addition, the 
derivative Φ(x) is not equal to zero, the inverse 
function will not have a discontinuity, that it is 
especially important for its numerical calculations. 
Figure 3 illustrates this transformation. 

There arises a question on the performance of the 
operations described. Really, to define the phase 
Φ(x), knowing only U(x), this phase needs to be 
known for making transformations (13). But, it is 
possible to assume here, that function  

 

Φî(x) = arctan [H
x

U(x) / U(x)] (14) 

 
is sufficient for performing the initial compression of 
the spectrum. Then the iterative process is executed 
following equation: 
 

Φn+1(x) = arctan 
⎣
⎢
⎡

⎦
⎥
⎤H

t
 U(F–1

n (act))

U(F–1

n (act))
 

τ =

 
Φn(x)/ αc

. (15) 
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FIG. 4. Numerical simulation of the iterative 
equation for the estimation of a phase with the use 
of the extension–compression transformation.  The 
estimation of the accuracy of a signal phase without 
iterations, (see  – –�– – ).  The estimate of the 
accuracy of a signal phase at four iterations,  
(see –

∞
– ).  The estimate of causality degree of a 

signal after its transformation and degree of 
monotony of a signal phase, (see - - -).  As 
confidence intervals we show the rms deviations of 
the corresponding values. 

For numerical simulations of the iteration 
transform we generated the realizations of the 
random phase ϕk, k ∈ [1, N], N = 256 within the 
limit of one period, as in the previous experiment.  
The spectral density of these realizations is constant, 
when the frequency α ∈ [2, 5], σϕ = π/5, and the 
average is equal to zero.  Then a linear component 
was added to ϕk and this sum Φk = ϕk + αck was 
obviously monotonic at αc = 8.   

The complex process Wk = cos Φk + i sin Φk was 
constructed and the estimates pc were calculated for Wk, 

εn = ∑
k = 1

N

 [Φk – Φnk]
2 / ∑

k = 1

N

 ϕ2

k 

and pm for Φk at α ∈ [0, 8].   The value Φnk was 
determined from the iterative Eq. (15) at n = 4 and 
from the Eq. (14) at n = 0.  The averaging of the 
estimates was conducted over thirty realizations of 
the random process for each value αc independently.  
The results are shown in Figure 4.  It is seen, that 
four iterations essentially improve the estimates of 
the phase when pm = 1 and Φk is monotonic.  
 

6. UNIQUENESS OF THE ANALYTIC SIGNAL 
IN THE MULTIDIMENSIONAL CASE  

 
As is seen, the analytic signals, Eq. (6) and (8), 

are the cross–sections of the same function 
W(x, y, z, t).  Therefore, the amplitudes and phases 
in these expressions are also the cross–sections of the 
same four–dimensional functions.  

The function W(x, y, zo, to), being a cross–
section of the expression (5), is not an analytic signal 
of the variables x or y, being different from it only 
by the linear phase additive ÀS, is contained in the 
interferogram, Eq. (9). For functions with a 
monotonic phase the convertible transformation  in 
the AS, Eq. (13), also exists. 

These properties are a consequence of the 
limited bands of the temporal spectrum and the 
spectrum of spatial frequencies, connected with the 
wave propagation direction.  The optical wave in 
the quasimonochromatic, geometrical, parabolic 
approximation has these properties. Besides the 
form of the wave equation solution, when the 
spatial variables and time are additive arguments of 
the exponential function (5), allows to use the 
spatial and the temporal carrier frequencies in the 
analysis jointly.  

All this give a possibility to define the uniform 
four–dimensional analytic signal, its envelope and 
phase as follows: 

W(x, y, z, t)
def

=U(x, y, z, t) + iV(x, y, z, t) , 

V(x, y, z, t) = H
t

U(x, y, z, t) = H
z

U(x, y, z, t) , 

V[p(x, y, z), t] = H
x

U[p(x, y, z), t] = 

= H
y

U[p(x, y, z), 
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V[x(τ), y(τ), z(τ)] = H
r
U[Φ–1(ac r)] r = Φ(τ)/αc

 . 

The practical use of these expressions is that 
they enable to design the algorithms of measurement 
of phase in various spatiotemporal, one–dimensional 
and multidimensional cross–sections and provide its 
coincidence with the uniform four–dimensional phase 
in these cross–sections.  Determined by ÀS the 
amplitude and the phase are invariant relative to the 
replacement of the Hilbert transform argument and 
consequently are unique.  
 

CONCLUSIONS 
 

For the description of a wave field in the 
multidimensional case we introduced the analytic 
signal, invariant relative to the replacement of the 
Hilbert transform argument, determining unique 
multidimensional phase of the optical wave.  

It is shown, that unique four–dimensional phase 
exists only as a consequence of the narrow–band 
temporal and the spatial spectra of the wave.  

Conformities between the causality of the 
Fourier transform of a complex function and the 
monotony of its phase is established.  A concept of 
the dispersion causality is introduced using the 
dispersion definition of width.  

It is shown, that from the monotony of the 
phase follows the dispersion causality of the Fourier 
transform of the complex wave function with 
constant amplitude. 
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