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The estimations of the parameters of a partially observed alternating 
flow of events have been  obtained by the method of moments. Properties of 
the parameters were considered. The theoretical results obtained were verified 
by means of a simulation model. 

 

Many physical processes and phenomena are 
often described using a mathematical model of 
events. But the majority of publications deal only 
with the case when the events in a flow may be 
observed. But in practice an event in the flow can 
obscure observation of the subsequent  events. As an 
example can be taken the processes in a Geiger 
counter. The peculiarity of this device is that a 
particle penetrating inside a counter induces a 
discharge. The discharge continues some time during 
which other particles cannot be recorded. So a 
problem arises of recording real flow of particles by 
means of such devices. Similar problem was 
considered in Refs. 1 and 2 for Poisson flow of 
events. In this paper the results obtained are 
generalized for the case of alternating flow of events. 
In atmospheric optics one faces similar problems 
when considering propagation of radiation through 
broken clouds and also in the problems of 
determining optical parameters of the turbulent 
atmosphere.  

 

1. STATEMENT OF THE PROBLEM 
 

Let us consider a stationary Poisson flux with 
the intensity λ, which can be observed only during 
some intervals. The process of observations is defined 
as a discrete Markovian process with continuous time 
which has two (0 and 1) states. When the controlling 
process is in the state 1 the Poisson flux can be 
observed, if it is in state 0 observations are 
impossible. The intensity of control process transition 
from state 1 to state 0 and back are α and β. 
Stationary intervals of the control processes are 
distributed according to exponential law. So control 
process results in an alternating flow of events which 
is partially obscured because after an occurrence of 
an event in this flow there exists some finite interval 
T during which other events may not be observed. 
Let us call this interval "dead time". The events in 
the dead time do not result in its prolongation, but 
after termination of the first event in the alternating 
flow it causes again the next period T when 
observations are impossible, etc. This situation is 
depicted in Fig. 1, where  the intervals of dead time 
are hatched, 0 and 1 are states of the controlling 
process, t is the current time, and {t1, ..., tn} are 
moments when the events occur in the flow. The 

assessment of Poisson flux intensity λ should be 
obtained from these results and also assessments of 
dead time intervals and intensities of the transitions 
α and β as well. 

 

 
FIG. 1. 

 

2. DISTRIBUTION OF THE OBSERVED 

VALUES PROBABILITIES 
 

Let us use time intervals τi = ti+1 – ti, i = 1, n
⎯⎯

 
instead of {t1, ..., tn}. Let us take {t1, ..., tn} as the 
initial parameters for processing. It can easily be 
shown that the observed flux is recurrent, i.e., values 
{t1, ..., tn} are independent and distributed according 
to the same law. So the probability density ð(τ) of 
time intervals between successive  events in the flow 
can be taken as a basis for further analysis.  

Let us assume that an event is observed in the 
flow. Also we assume that this event occurs at the 
moment t = 0. So the controlling process is in state 1. 
For the probability to find the controlling process in 
state j (j = 0, 1) let us introduce the designation πj(t). 
Then the following system of equations is valid for πj(t) 

⎩
⎨
⎧

 

π0
′(t) = –β π0(t) + α π1(t),

π1
′(t) = β π0(t) – α π1(t).

   (1) 
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Because the event occurs at the moment t = 0, 
the initial conditions for t = 0 are as follows 
π1(0) = 1 and π0(0) = 0. So the solution of system 
(1) can be written in the form 

⎩⎪
⎨
⎪⎧

 

π0(t) = 
α

α + β – 
α

α + β exp(–(α + β)t),

π1(t) = 
α

α + β + 
α

α + β exp(–(α + β)t).
  (2) 

In what follows we will need the solution of 
system (2) for t = T. So, by substituting t = T into 
Eqs. (2) we obtain 

⎩⎪
⎨
⎪⎧

 

π0(T) = 
α

α + β – 
α

α + β exp(–(α + β)T),

π1(T) = 
α

α + β + 
α

α + β exp(–(α + β)T).
  (3) 

Let Ðj(t) be the probability of the process being 
in state j at the moment Ò + t.  This means that 
events do not occur in the interval (Ò, Ò + t). So 
Ðj(t) is a solution to the following system 

⎩
⎨
⎧

 

P1
′(t) = –(λ + α) P1(t) + β P0(t),

P0
′(t) = α P1(t) – β P0(t),

 (4) 

In this case the initial conditions are 

P1(0) = π1(T) ,   P0(0) = π0(T) , 

where π0(T) and π1(T) are defined by Eqs. (3). 
Then the solution of the system (4) can be 

written as 

⎩
⎨
⎧
P1(t) = 

β – z1

α  B1 exp(– z1 t) + 
β – z2

α  B2 exp(– z2 t),

P0(t) = B1 exp(– z1 t) + B2 exp(– z2 t),
 

where 

z1 = 
λ + α + β – (λ + α + β)2 – 4λβ

2  , 

 

z2 = 
λ + α + β + (λ + α + β)2 – 4λβ

2  , 

 

B1 = 
α

(z2 – z1)(α + β)
 {z2 + (z1 – λ) exp(–(α + β)T)} , 

 

B2 = – 

α
(z2 – z1)(α + β)

 {z1 + (z2 – λ)  exp(–(α + β)T)} .  (5) 

Evidently, the probability density p(t) for a time 
interval between the end of the dead time and the 
beginning of the first event in an alternating flow is  

p(t) = λ P1(t) . 
The interval between two successive events in 

the alternating flow is equal τ = Ò + t, so allowing 
for the last formula we obtain 

p(τ) = λ P1(τ – T) . 

Then taking into account Eq. (5) and after 
simple mathematical manipulations we obtain the 
following equation for ð(τ) 

p(τ) = γ z1 exp(– z1(τ – T)) + (1 – γ) z2 exp(– z2(τ – T)),
 (6) 

where 

γ = 
z2 – l

(z2 – z1)(α + β)
 [z2 + (z1 – λ) exp(–(α + β)T] . 

Variables z1 and z2 are defined in Eq. (5). 
Let us note that Eq. (6) is valid only at  τ ≥ Ò. 

For 0 ≤ τ < T   ð(τ) ≡ 0. 
 

3. CONSTRUCTING ESTIMATES 

 

Estimations of the parameters were obtained by 
the method of moments3 using four statistics  

Ck = 
1
k! 

1
n ∑

i = 1

n

 τ i
k
 ,   k = 1,4 .  (7) 

True moments are calculated by the formula 

M{τk} = ⌡⌠
0

∞

 
 τ

k p(τ) dτ . 

By substituting ð(τ) into this formula from 
Eq. (6) we obtain 

M{τk} = k! 
⎣
⎢
⎡

⎦
⎥
⎤γ exp(z1 T)

z1

k 
 + 

(1 – γ)  exp(z2 T)

z2

k  .  (8) 

According to the method of moments the 

estimations for ẑ1, ẑ2, Ò̂, γ̂ can be derived from the 
system of equations 

M{τk} = Ck ,   k = 1,4 . 

Allowing for Eq. (8) this system changes to the 
form 

γ̂ exp(ẑ1 T̂)

ẑ1
 + 

(1 – γ̂) exp(ẑ2 T̂)

ẑ2
 = C1 , 

γ̂ exp(ẑ1 T̂)

ẑ1

2  + 
(1 – γ̂) exp(ẑ2 T̂)

ẑ2

2  = C2 , 

γ̂ exp(ẑ1 T̂)

ẑ1

3  + 
(1 – γ̂) exp(ẑ2 T̂)

ẑ2

3  = C3 , 

γ̂ exp(ẑ1 T̂)

ẑ1

4  + 
(1 – γ̂) exp(ẑ2 T̂)

ẑ2

4  = C4 . 

Let us write a solution for this system as  

T̂ = 

ln 
⎝
⎜
⎛

⎠
⎟
⎞ẑ1

2
(C2 ẑ2 – C1)

γ̂(ẑ2 – ẑ1)

ẑ1
 , 
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where ẑ1 and ẑ2 are  the roots of  the equation 

(C3

2
 – C2 C4) ẑ

2
 – (C2 C3 – C1 C4) ẑ + (C2

2
 – C1 C3) = 0, 

γ̂ is a root of the equation 

(1 – γ) = ẑ2

2
 
C1 –

 

ẑ1 C2

ẑ2 – ẑ1
 
⎣
⎢
⎡

⎦
⎥
⎤ẑ2

 

– ẑ1

ẑ1

2
 (C2 ẑ2 – C1

)
 
ẑ2/ẑ1

γ 
ẑ2/ẑ1

 .  (9) 

Estimations ẑ1, ẑ2, Ò̂, γ̂ explicitly define a form 
of the estimations 

λ̂ = ẑ1 + ẑ2 – x* ẑ2 , 

α̂ = x* ẑ2 – 
ẑ1 ẑ2

ẑ1 + ẑ2 – x* ẑ2
 , 

β̂ = 
ẑ1 ẑ2

ẑ1 + ẑ2 – x* ẑ2
 , 

where õ*  is a root of the following equation:  

γ̂ [1 – ẑ1/ẑ2] 

x
x – ẑ1/ẑ2

 = 1 + (x – 1) exp(– x ẑ2 T̂) . (10) 

4. PROPERTIES OF ESTIMATIONS 

 
Let us consider the fidelity of the estimations 

obtained. Using Kolmogorov theorem4 we can write  

Ck = 
1
k! 

1
n ∑

i = 1

n

 τ i
k
 → 

1
k! M{τ i

k
} 

which is almost certainly true for n → ∞. Allowing 
for Eq. (8) at n → ∞  the following formula is almost 
certainly valid: 

Ck → 
γ exp(z1 T)

z1

k  + 
(1 – γ) exp(z2 T)

z2

k  .   (11) 

Using Eq. (11) it is easy to show that the 
following equation:  

(C3

2
 – C2 C4) ẑ

2
 – (C2 C3 – C1 C4) ẑ + (C2

2
 – C1 C3) = 0 

at n → ∞ almost certainly reduces to the from 

ẑ2 – (z1 + z2) ẑ + z1 z2 = 0 . 

From this equation it follows that with high 
probability at n → ∞  ẑ1 → z1 and ẑ2 → z2 . 

So we obtain the equations 

γ̂ exp(ẑ1 T̂) = ẑ1

2
  
ẑ2 C2 – C1

ẑ2 – ẑ1
 ,   

(1 – γ̂) exp(ẑ2 T̂) = ẑ2

2
  
C1 – ẑ1 C2 

ẑ2 – ẑ1
 .   (12) 

Allowing for Eq. (11) and taking into account 
convergence of estimations ẑ1 and ẑ2, to the true 
values z1  and z2, at n → ∞ Eq. (12) reduces to the 
equations  

γ̂ exp(ẑ1 T̂) = γ exp(z1 T) , 

(1 – γ̂) exp(ẑ2 T̂) = (1 – γ) exp(z2 T) .    (13) 

From the first of these equations we obtain 

 T̂ = ln γ1/ẑ1 + T – ln γ̂1/ẑ1 . 

Substituting this equation into the second of 
Eqs. (13) we obtain 

(1 – γ̂) = 
⎝
⎛

⎠
⎞1 – γ̂

γ̂ẑ2/ẑ1
 γ̂ẑ2/ẑ1 . 

From this it follows that at n → ∞  with high 
probability we have γ̂ → γ . 

If taken into consideration together with 
Eq. (13) at n → ∞ this formula almost certainly leads 

to the equation T̂ → Ò. 

Since estimations λ̂, α̂, and β̂ are related to 

estimations ẑ1, ẑ2, T̂, and γ̂, the second estimation is 
almost certainly convergent, so the convergence of 

the first estimations to  true values λ̂, α̂, and β̂ is 

almost certain too. So the estimations λ̂, α̂, and β̂ 
obtained are valid.  

Because the estimations are valid, using the 
method of linearization we may derive asymptotic 
standard deviations for the estimations  

D(λ̂) = 
1
n Bλ

Τ

 E Bλ , D(α̂) = 
1
n Bα

T
 E Bα ,  

D(β̂) = 
1
n Bβ

T
 E Bβ , D(T̂) = 

1
n BT

T
 E BT , 

where 

Bλ

Τ

 = (B11, B12, B13, B14),  Bα

T
 = (B21, B22, B23, B24), 

Bβ

T
 = (B31, B32, B33, B34),  BT

T
 = (b41, b42, b43, b44) . 

Here we have introduced the following 
designations: E is a matrix with the elements  

Esm = (z2)
–(s+m)

⎩
⎨
⎧
 

 (s + m)!
s! m!  ⎣

⎡
⎦
⎤γ exp(z1

 

T)
(z1/z2)

s+m + (1 – γ) exp(z2 T)  – 

– ⎣
⎡

⎦
⎤γ exp(z1

 

T)
(z1/z2)

s  + (1 – γ) exp(z2 T)  × 

× ⎣
⎡

⎦
⎤γ exp(z1 T)

(z1/z2)
m  + (1 – γ) exp(z2 T)

⎭
⎬
⎫

 

 
, 

 

B1i = Δ11 ∑
j = 1

4

 ωj bji + 2 Δ12 b1i + 2 Δ13 b2i ,  

 

B2i = Δ21 ∑
j = 1

4

 ωj bji + 2 Δ22 b1i + 2 Δ23 b2i ,  

 

B3i = Δ31 ∑
j = 1

4

 ωj bji + 2 Δ32 b1i + 2 Δ33 b2i ,  i = 1, 4 , 

where 



174  Atmos. Oceanic Opt.  /March  1997/  Vol. 10,  No. 3 A.M. Gortsev and M.E. Zavgorodnyaya 
 

ω1 = – 

α +
 

β – z2

(α + β)(z2 – z1)
2 [z2 + (α + β – z2) exp(–(α + β)T] , 

ω2 = – 
α

 

+ β – z1

(α + β)(z2 – z1)
2 [z1 + (α + β – z1) exp(–(α + β)T] , 

ω3 = –1 ;  ω4 = – 
la

z2 – z1
 exp(–(α + β)T) , 

Δi j = Aji/(det Δ) (i, j = 1, 3 ), Aji  is an algebraic 

supplement of the element Δ(j,i) of the matrix Δ. 
Elements of this matrix are given by the formulas  

Δ(1,1) = 0 , 

Δ(1,2) = 
1

(α + β)2(z2 – z1)
 {λβ + [(α + β)2 – λβ] × 

× exp(–(α + β)T) + λα(α + β)T exp(–(α + β)T)} , 

Δ(1,3) = 
1

(α + β)2(z2 – z1)
 {λβ + [(α + β)2 – λβ] × 

× exp(–(α + β)T) + λα(α + β)T exp(–(α + β)T)} , 

Δ(2,1) = –1 + 
λ + α – β

(λ + α + β)2 – 4λβ
 ,   

Δ(3,1) = –1 – 
λ + α – β

(λ + α + β)2 – 4λβ
 , 

Δ(2,2) = –1 + 
λ + α + β

(λ + α + β)2 – 4λβ
 ,  

Δ(3,2) = –1 – 
λ + α + b

(λ + α + β)2 – 4λβ
 , 

Δ(2,3) = –1 + 
α + β – λ

(λ + α + β)2 – 4λβ
 ,    

Δ(3,3) = –1 – 
α + β – λ

(λ + α + β)2 – 4λβ
 , 

bji = Aji/(det B) (i, j = 1, 4 ) ; Aji  is an algebraic 

supplement of the element b(j,i) of the matrix B. 
Elements of this matrix are given by the following 
formulas: 

b(1,1) = 
T z1 – 1

z1

2  γ exp(z1 T) ,   

b(1,2) = 
T z2 – 1

z2

2  γ exp(z2 T) , 

b(1,3) = 
exp(z1 T )

z1
 – 

exp(z2 T )

z2
 , 

b(2,1) = 
T z1 – 2

z1

3  γ exp(z1 T) ,  

b(2,2) = 
T z2 – 2

z2

3  γ exp(z2 T) , 

b(2,3) = 
exp(z1 T )

z1

2  – 
exp(z2 T )

z2

2  , 

b(3,1) = 
T z1 – 3

z1

4  γ exp(z1 T) ,   

b(3,2) = 
T z2 – 3

z2

4  γ exp(z2 T) , 

b(3,3) = 
exp(z1 T )

z1

3  – 
exp(z2 T )

z2

3  , 

b(4,1) = 
T z1 – 4

z1

5  γ exp(z1 T) ,   

b(4,2) = 
T z2 – 4

z2

5  γ exp(z2 T) , 

b(4,3) = 
exp(z1 T )

z1

4  – 
exp(z2 T )

z2

4  , 

b(1,4)
 = γ exp(z1 T) + (1 – γ) exp(z2 T) , 

 b(2,4)
 = 

γ exp(z1 T )

z1
 + 

γ exp(z2 T )

z2
 , 

b(3,4) = 
γ exp(z1 T )

z1

2  + 
γ exp(z2 T )

z2

2  ,  

b(4,4) = 
γ exp(z1 T )

z1

3  + 
γ exp(z2 T )

z2

3  . 

 
5. RESULTS OF SIMULATIONS 

 
A statistic experiment has been performed to 

verify the obtained theoretical result. A flow of 
observable events which have been simulated. The 
values {τ1, ..., τn} were obtained using  which the 
statistics Ck were constructed according to Eq. (7). 

Based on the statistics Ck the estimations λ̂, T̂, α̂, 

and  β̂ are calculated by Eqs. 9 and 10. A series of 
100 experiments allowed us to calculate the mean 
values in samples and standard deviations which are 
essential for obtaining of interval estimations. At 
the  95% level of confidence (ð = 0.95) intervals of 
confidence were obtained for estimations of the true 
values of parameters. In Fig. 2 the results of 
simulations are presented for the following set of 
parameters: λ = 10, Ò = 0.001, α = 0.5, β = 5. So 
we can conclude that the results of statistical 
experiment obtained by simulation of the system 
behavior confirmed the obtained theoretical results.  
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c d 
FIG. 2. 
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