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This paper describes an analytical solution of the exact equation for 
coherence function for parabolic profiles of the refractive index and 
amplification coefficient distribution in an active medium cross-section.  The 
applicability limits of the radiation transfer equation are analyzed by a direct 
comparison of analytical solutions of the equation for coherence function and 
the radiation transfer equation for a wide range of the active medium 
dimensionless parameters.  The problem of the applicability limits is also 
discussed based on a comparative analysis of general solutions of the exact and 
approximate integral equations. 

 

The investigation of spontaneous radiation 
amplification in active media with inhomogeneous 
distribution of inverse population is important for the 
creation of lasers without cavity, i.e., lasers without 
end reflectors (mirrors).  There are several 
approaches to the theoretical investigation of output 
radiation of such lasers.  The approaches are based on 
the paraxial approximation.  As an original equation 
either a wave equation 

 

2ik 
¶E
¶z  + ∇

2
^E + k

2 
Δε(z, ρ) E(z, ρ) = Psp(z, ρ) , (1) 

 

is used or identical equation for the second order 
coherence function (R = (ρ1 + ρ2)/2, ρ = ρ1 – ρ2) 
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2
 [Δε(z, R + ρ/2) – 

– Δε (z, R – ρ/2)] Ã2(z, R, ρ) = 
iWef

k  g(z, R) δ(ρ). (2) 

 

As a rule, the authors (for example, Refs. 1 and 
2) when solving Eq. (2) use the Taylor 
approximation 

 

Δε(z, R + ρ/2) – Δε* (z, R – ρ/2) = 

= ε (z, R + ρ/2) – ε (z, R – ρ/2) + 

+ i [σ (z, R + ρ/2) + σ (z, R – ρ/2)] ≅ 

≅ ρ∇R ε (z, R) + 2i σ (z, R) + i ⎝
⎛

⎠
⎞r

2 ∇R

2

 σ (z, R) .  (3) 

It should be noted that the expansion (3) is 
exact for a parabolic profile of complex dielectric 
constant.  Then, omitting the last term of Eq. (3) 

and substituting the result in Eq.(2) we derive the 
following equation 
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2i ρ∇R e(z, R) + k s(z, R)  Ã2(z, R, ρ) = 

 

= 
Wef

2k
2  g(z, R) δ(ρ). (4) 

 

This equation is already an approximate 
consequence of the equation for the transverse 
coherence function (2).  The above approximations 
are justified from the point of view that the obtained 
equation makes it possible both the creation of 
effective numerical algorithms for this problem 
solution and the derivation of analytical solution for 
inhomogeneous distribution of dielectric constant and 
amplification factor in active media.1–4 

However, as mentioned above,3 for media with 
transverse inhomogeneity of the amplification 
(absorption) factor Eq. (4) well describes the power 
radiation characteristics and introduce an error in the 
estimate of its coherent properties. In particular, in 
this case we would have to use the following 
definition of a module of the coherence degree: 

μ(ρ) = 
⏐Γ2(z, R = 0, ρ)⏐

W(z, R = 0)  = 
⏐Γ2(z, R = 0, ρ)⏐
Γ2(z, R = 0, ρ = 0)  (5) 

instead of the exact definition 

μ(ρ) = 
⏐Γ2(z, R = 0, ρ)⏐

W(z, R = ρ/2) W(z, R = – ρ/2)
 ,  (6) 

since the latter gives rise to incorrect results.  This 
fact calls for further theoretical analysis of the 
applicability limits of this equation to the problems 
of such a kind. 
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Analysis of the applicability limits is performed 
by direct comparison of analytical solutions of the 
exact equation for the coherence function (2) and the 
approximate equation (4).  Solutions of these 
equations are obtained for the parabolic profile of 
distribution of the refractive index and the 
amplification factor in the active medium cross-
section without considering the effect of dielectric 
constant fluctuations, i.e., it is believed that 

 

ε(R) = 1 + (R
2
 – a

2
)/L

2
R, |R| < a,  ε(R) = 1,  |R| > a, 

  (7) 
g(R) = g0(1 − R

2
/a

2
), |R| < a,  g(R) = 0, |R| > a, 

 

where L
2
R = a2/ε0 is the refraction length, ε0 and g0 

are the perturbations of the dielectric constant and 
the amplification factor on the beam axis, an 
imaginary part of the dielectric constant σ is 
connected with the amplification factor of a medium 
g by the following ratio: 

 

σ(z, R) = − k
–1 

g(z, R). 
 

Spontaneous radiation depends upon the 
presence of random polarization in a medium, which 
is considered to be of Gaussian Statistics and satisfies 
the condition 

 

<Psp(r) P*sp(r′)> = Wef(r) g0 δ(r – r′),  r = {z, R}, (8) 
 

where Wef is the effective intensity of spontaneous 
emission.  The condition (8) was used when deriving 
Eqs. (2) and (4), and it will be needed in what 
follows.  Besides, the following approximations 
 

Wef (z, R) = W
δ�ef (R) δ(z), (9) 

 

W
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δ�0 exp(– R 

2
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2
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were used. 
The condition (9) denotes that we consider the 

contribution to the output radiation only from an 
infinitely thin layer of emitters located in the end 
area of the active medium (approximation of 
incoherent disc).  The condition (10) can also be 
considered as an approximation, since in a rigorous 
statement of the problem the source intensity 
distribution must repeat the amplification factor 
distribution, i.e., it must have the parabolic profile. 

Based on these assumptions, in Ref. 3, we obtain 
the solution of the approximate equation (4), from 
which it follows that the intensity distribution and 
the radiation coherence function in the output plane 
are of the form: 
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μ(ρ) = ΩΓ2(z, R = 0, ρ)Ω/W(z, R = 0) = exp (− 
ρ2
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In the framework of the above assumptions  
(7)–(10) it is possible to obtain the solution of the 
exact equation (2).  For this purpose we use the so-
called method of complex ABCD radiation matrix 
elements, Refs. 5–7.  By using the parabolic 
approximation of the dielectric constant in the cross-
section this method enables us to reduce the problem 
of the Green’s function determination for Eq. (1) to 
the problem of calculation of complex trajectories 
from the solution of an ordinary second-order 
differential equation. 

In the case when imaginary part of the dielectric 
constant is equal to zero, the problem is essentially 
simplified.  Then the radiation trajectories are real 
and have a clear physical meaning.  The type of the 
Green’s function for a given case can be found, for 
example, in Ref. 8. 

In the general case, when the dielectric constant 
of the medium satisfies the relations (7), the Green’s 
function is of the form 
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k
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2
R) ,  ϕ = arctan(η

–1
). 
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It should be noted that this solution was 
obtained without using any approximations and was 
the exact solution of Eq. (1).  Then, using Eqs. (8)–
(10), we can write an expression for the intensity 
distribution and coherence function in the output 
plane, satisfying the exact equation (2) 
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It is easy to show that, when zi tends to zero, 
the solution of exact equation (2) tends to the 
solution of an approximate equation (4).  The 
condition zi << 1 is identical to the condition 

z << 2 LD/(g0 LR),  (14) 

which determines the limits of applicability of the 
approximate equation.  We calculated the values of 
the output radiation coherence radii for different 
dimensionless parameters of the problem 
characteristic of x-ray lasers.  The results were 
obtained based on the exact and approximate 
solutions.  Comparison of the results shows that the 
values of radii differ by no more than 5% if 

z ≤ LD/(g0 LR), 

which holds for most x-ray lasers. 
It should be noted that such a coincidence is 

achieved when determining the coherence radius from 
solution of Eq. (11) with the use of Eq. (5).  From the 
exact formula (6) it follows that for the coherence 
radius for solution of Eq. (11) we can write as 

a
–2

μ  = a
–2

ρ  – a
–2

ω  . 

This expression not only corresponds to an exact 
value of aμ, following from the solution of Eq. (13) 

but can lose physical meaning at large z since in this 
case aρ > aw and a square of the coherence radius aμ 

becomes negative. 
This fact can be explained by analyzing the 

integral solution of Eq. (2).  It is evident (see Ref. 9) 
that Eq. (1) is identical to the set of equations 
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E(z, R) = A(z, R) exp [iS (z, R)];  

θ = k
–1

 ∇⊥ S;   dR/dz = θ. 

From Eq. (15) it follows that Green’s function 
(1) can be represented as 
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where AG  and SG  are the amplitude and the phase 
of the wave from a point source.  The amplitude 
variation is determined by the variation of an area of 
an elementary ray cone, originating from a point 
{z = 0, R0}, and the value of the optical depth of the 
amplification, τ, along these rays.  Integration in 
Eqs. (16) is performed along the rays, whose paths 
satisfy Eq. (15.1).  The set of Eqs. (15) is analogous 
to equations of geometrical optics.  But the presence 
in the right-hand side of Eq. (15.1) of the last term 
results in the fact that the ray paths and phase shift 
along those are determined with the account for 
diffraction effects.  And this, in its turn, has led to 
the assumption that the solution of this set of 
equations has no caustic features.  If the Green’s 
function of the medium is known, we can write the 
expression for the field coherence function 
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 exp{i [S(ρ1) – S(ρ2)] + [τ(ρ1) + τ(ρ2)]/2 }.  (17) 
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When deriving Eq. (17) the conditions (8) and 
(9) were used.  Further, going to the integrated and 
difference coordinates and performing the Taylor 
expansions of the functions S and τ, the following 
expression is derived: 

Γ2(z, R, ρ) = k
2
 

d R(z)

dθ0
 

–1 

 × 

× 
⌡⌠

–∞

∞

 

 

dρ0 Wδ ef(ρ0) exp {iρ—⊥S + τ} exp {(ρ —
⊥
)
2 
τ}.  (18) 

When deriving Eq. (18) the following 
approximation was used: 

d ρ1(z)

dθ0
 

–1/2

 
d ρ2(z)

dθ0
 

–1/2

 ª 

d R(z)

dθ0
 

–1

,  

R = (ρ1 + ρ2)/2. 

Integral solution to Eq. (4)  similar to Eq. (18) 
can be derived as follows. 

When making the Fourier transform of Eq. (4) 
over the difference coordinate ρ we obtain the 
radiation transfer equation: 

∂J
∂z + [q ∇R + 

k
2 ∇R ε ∇q + k σ(z, R)] J(z, R, q) = 

= 
g0

8π
2
k

2 Wef (z, R).  (19) 

Its general integral solution may be presented as3 

Γ2(z, R, r) = k2
d θ(z)

dR0
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d R0 Wδ ef(R0) ¥ 

× exp {i k q(R0, R, z) ρ + τ(R
0
, R, z)},  (20) 

where the characteristics R = R(z) obey the equation 

d2R

dz2  = 
1
2 ∇R ε [z, R(z)]  (21) 

and the initial conditions R(z = 0) = R0, 
dR(z = 0)/dz = θ0. 

If the last term in Eq. (15.1) is omitted, it 
becomes identical to Eq. (21).  Furthermore, if we 
take into account that 

d θ(z)

dR0

 = 
d R(z)

dθ0

–1

 and —⊥ S = k q(R0, R, z), (22) 

the following conclusion may be drawn. 
Equations (18) and (20) differ only by the 
exponential multiplier in Eq. (18).  The reason is 
that in deriving Eq. (4) the corresponding 
component in Eq. (3) was omitted.  However, we 
 

are able to verify that the use of the definition (5) 
for solving (20) gives the same result as the 
definition (6) for solving (21), i.e., with the 
consideration for this fact the solution (20) is 
similar to expression (18).  The Eq. (18) follows 
from the exact solution (17) with the use of square 
approximation for the functions S and τ by the 
difference argument ρ and ignoring the last term in 
(15.1).  The applicability of square approximation 
is determined by fulfilling the condition3 

ρc < a, 

where ρc  is the radiation coherence radius. 
As to the error, due to neglect of the last term 

in Eq. (15.1), earlier3 this error was explained by 
the fact that in this case the diffraction effects were 
neglected, due to additional distortion of the beam 
shape at inhomogeneous amplification.  However, 
as follows from the analysis of the set of equations 
(15), this term, for inhomogeneously amplifying (or 
absorbing) media, describes not only the diffraction 
effects but also the beam refraction at the 
inhomogeneous amplification profile.  This follows 
from the fact that if in the set (15) k → ∞, i.e., one 
changes to the geometrical optics approximation, 
this term does not become zero, and Eq. (15.1) 
takes the form 

d2R

dz2  = 
1
2 ∇⊥ {ε (z, R(z)) + 

1
4 [

⌡⌠
0

z

 

 

 dz′ ∇⊥ s(z′, R(z′))]
2 
}.  

  (23) 

The appearance of the second term in Eq. (23) 
is caused by the fact that the exponent in (16.2) is 
proportional to k.  For the media with 
homogeneous amplification this term vanishes since 
∇⊥σ ≡ 0.  From Eq. (23) it follows that for the 
media where there is no disturbance of the 
dielectric constant ε while inhomogeneous 
amplification (absorption) is available, the 
geometric beams deviate from rectilinear 
propagation and, hence, the beam undergoes 
refractive distortions.  A characteristic length at 
which such distortions occur, for the media with 
ε ≡ 0 (i.e., η ≡ 0) is 

Lσ = a/(σ0/2)
1/2

. 

For active medium of an x-ray laser the 
condition η >> 1 is typical.  In this case the 
refraction is determined mainly by perturbations of 
the dielectric constants and the amplification 
inhomogeneity contributes significantly to the 
refraction at the distance Lσ, being much greater 

than LR 

Lσ = 2 LR h = 2 LD/(g0 LR).  (24) 
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Thus the applicability of the radiation transfer 
equation is limited by the situations when the 
contribution of inhomogeneous amplification to the 
beam refraction is insignificant, i.e., when 

z <  <Lσ, 

that for η >  >1 coincides with expression (14).  
However, this conclusion was drawn on the basis of the 
results obtained using the conditions (8) i.e., for the 
case of amplification in the inhomogeneous active 
medium of spontaneous radiation.  The situation, when 
the radiation with finite radius of coherence is incident 
on a medium, requires further investigation. 
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