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In this paper we consider the effects of stimulated light scattering in 
transparent spherical particles (stimulated Raman scattering, stimulated 
Mandel’shtam–Brillouin scattering, stimulated fluorescence) connected with 
the amplification of spontaneous scattering wave by resonant modes of the 
internal optical field of a particle.  These phenomena are described 
theoretically from a unified physical viewpoint, their common regularities are 
established, the threshold and angular behavior of stimulated scattering are 
discussed.  The effects of Raman light scattering on surface waves caused by 
ponderomotive light field forces on liquid particles are studied theoretically.  
We also consider the angular structure of the field of a scattered wave. 

-

INTRODUCTION 
 

Nonlinear optical effects of stimulated light 
scattering (SS) in a weakly absorbing continuous 
media  (stimulated Raman scattering (SRS), 
stimulated Mandel’shtam–Brillouin scattering 
(SMBS)) are well described in scientific literature.  
Only recently it was discovered that the 
manifestation of these effects has specific features for 
a disperse substance.1–5  For instance, the spectral 
form of the SRS signal has the “spiky” structure 
within the Raman contour; the SRS signal is delayed 
relative to the pump pulse,1,4 the energy SRS and 
SMBS thresholds decrease as compared with a 
continuous medium.3  The presence of internal optical 
field resonances in micron particles is the main cause 
of resonant nonlinear optical effects in the particles 
(SRS, SMBS, and stimulated fluorescence (SF)).1  
The resonances are observed at certain values of the 
diffraction parameter of a particle xa = 2π a0/λ, xa >
> 1 (where a0 is the droplet radius, λ is the 
wavelength of laser radiation) and are characterized 
by the mode order and number of the partial 
electromagnetic wave yielding the resonance. 

The property of a transparent particle to focus 
light side it also plays an important role in the 
appearance of the SS effects.  Near the shaded and 
illuminated surfaces, two maxima of the 
electromagnetic field are formed inside the particle.  
The maxima are powerful sources of spontaneous 
Stokes radiation (the Stokes noises). 

The ponderomotive forces of the light field 
generate deformations and oscillations of the liquid 
particles.6,17–19  These oscillations of the particle 
shape cause Raman scattering of light incident onto 
the particle.21 

All nonlinear effects have different physical 
nature, and their similarity is in the fact that they 
are essentially determined by the spatial structure of 
the internal optical field near the surface of a particle 
and, consequently, they are effects of surface 
nonlinear scattering. 

The overwhelming majority of publications on 
this problem deal with experimental studies.  There 
are only few theoretical papers where the models of 
some SS effects in particles are presented.1,4,11,13,20 

The aim of this paper is the theoretical study of a 
wide class of nonlinear effects of Raman light 
scattering by transparent particles.  We make an 
attempt to fill a gap in the theory of nonlinear optical 
interactions in disperse media.  The gap is connected 
with the problem of stimulated light scattering 
important for atmospheric optical investigations. 

 
1. RESONANCES OF THE OPTICAL FIELD IN 

WEAKLY ABSORBING PARTICLES 

 
As known from the theory of diffraction of an 

electromagnetic wave on a dielectric sphere (Mie 
theory), the internal optical field at xa >> 1, in it is 
characterized by the presence of many spikes with the 
intensity difference of about 10–100 times.7  The 
maximal values of the internal optical field are reached 
near the surface of the sphere.  However, the 
investigations showed that, the internal optical field 
can multiply increase at quite certain; fixed values of 
the particle radius, especially in the ranges of maxima 
(104–106 times).1  Such an effect was called resonances 
of the internal optical field and it is considered as 
natural oscillation (resonant) modes of the spherical 
particle.  The presence of the internal optical field 
resonances deduced immediately from the Mie theory 
was also discovered experimentally by the presence of 
spikes in the scattering spectrum.8 

The solution of the problem on the diffraction of a 
plane electromagnetic wave on a sphere has the form 
defining the field inside it as a series over spherical 
harmonics9: 

E(r, θ, ϕ) = 

E0

2kr ∑
n=1

∞

 ∑
l=–n

n

 (–i)
n+1

 [bn(xa) Mnl(θ, ϕ) ψn(kr) + 

 

+ 
1
k cn(xa) ∇ × [Mnl(θ, ϕ) ψn(kr)]] +  compl.ñonjug. (1) 
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The amplitudes of the partial harmonics (Mie 
coefficients) are defined by the following expressions: 

 

bn = i
n
 

2n + 1
n(n + 1) 

– m
ξ′n(xa) ψn (mxa) – m ξn(xa) y ′n(mxa)

 , 
 

cn = i
n
 

2n + 1
n(n + 1) 

m
ξn(xa) ψ′n(mxa) – m ξ′n(xa) ψn(mxa)

 , 
 

where m is the complex relative refractive index; k is 
the wave number inside the particle; r, θ, ϕ are the 
spherical coordinates; ψn, ξn are the spherical Bessel 

functions; Mnl(θ, ϕ) = – 
i

[n(n + 1)]–1/2 L Ynl(θ, ϕ) are 

the spherical vector-harmonics; Ynl(θ, ϕ) are the 

spherical functions; L = – i r × ∇ = – i ⎣
⎡

⎦
⎤θ 

1
sinθ 

∂
∂θ – ϕ 

∂
∂ϕ   

is the angular momentum operator; E0 = ⏐E0⏐; E0 is 
the amplitude of the electric field of a light wave 
incident onto the particle.  The primes mean the 
derivatives of the functions with respect to their 
arguments. 

The natural resonances of the electromagnetic 
field in the particle are connected with the zeroes of 
the denominator in the expressions for cn and bn, and 
the position of the zeroes is determined only by the 
values m = ma/m0 (ma = na + i κa is the complex 
refractive index of the drop substance; m0 is 
introduced for a non-absorbing medium) and xa.  
Thus, in order to find resonances, one should 
determine the position of zeroes with respect to the 
scale xa in the denominators of cn and bn (Ref. 10).    
The deviation of the particle shape from the ideal 
sphere leads to decomposition of each resonant mode 
into a multiplet consisting of (2n + 1) lines and, 
consequently, to a sharp deterioration of resonant 
properties.11 

In the general case, the Q-factor of the nth 
resonant mode  the order of l can be written as 
follows: 

 

Qnl = 2πωS/(c Dnl), 
 

 

where c is the speed of light; Dln is the coefficient of 
total energy losses in the resonator; ωS is the 
frequency of the electromagnetic field inside the 
drop. In its turn, 
 

Dnl = D
r
nl + Da, 

 

where D
r
nl are radiation losses (due to tangent escape 

of radiation through the surface of the drop); Da are 
the radiation losses due to absorption in the drop 

substance.  It should be noted that D
r
nl is minimal for 

spherical particles; its value increases with the 
deviation of the particle shape from the ideal sphere. 

Then, the expression for the Q-factor of the 
spherical resonator is as follows 

 

(Qnl)
–1

 = (Q
r
nl)

–1
 + (Qa)

–1
 , 

 

where Qa = n
2
a ωS/(αc) (α = 4πσ/c is the volume 

absorption  coefficient;  σ  is  the specific 

conductivity of the particle substance); Q
r
nl is the 

radiative Q-factor. 
Figure 1 presents the total Q-factor Qnl as a 

function of the diffraction parameter xa for resonant 
modes of different numbers and orders (the points 
within a curve are resonances of different orders).  As 
one can see from the figure, the values of Qnl are 
limited from the above due to absorption (the 

calculations were performed for κa = 10
–8

). 
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FIG. 1.  The Q-factor Qln of different resonances of 
the internal optical field as a function of the 
diffraction parameter of water drops xa.  The 
figures at the curves are the numbers of the 
resonance order. 

 
2. THE THEORETICAL MODEL OF 

STIMULATED LIGHT SCATTERING IN 

SPHERICAL PARTICLES 

 
Let us briefly consider the basic aspects of the 

theoretical description of stimulated light scattering in 
transparent particles.  The scattering is caused either 
by spontaneous scattering at thermal fluctuations of a 
medium or by emission of fluorescing molecules in the 
particles. 

By now, the following physical model of SS origin 
in a spherical particle has established in the literature.1 

When the radiation interacts with the substance of 
a transparent particle spontaneous in elastic scattering 
arises in the whole volume of the particle due to 
thermal motion of molecules of the medium or 
fluorescence of molecules, that is most intense in the 
domains of the internal optical field focusing. A 
portion of waves from the spontaneous Stokes radiation 
spectrum leaves the drop, and a portion propagates 
along its surface due to the total internal reflection.  
The waves are attenuated on their path due to 
absorption and penetration through the surface; they 
can also be amplified due to nonlinearities of the 
medium.  In the case when the resonance condition is 
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satisfied for a frequency from the Stokes spectrum (or 
for some frequencies), i.e., when the frequency of the 
Stokes wave coincides with that of one of the natural 
resonance modes of the drop, the amplification of the 
spontaneous wave exceeds its total losses, and 
stimulated scattering arises in the particle.  From the 
viewpoint of formation of fields in a resonator, the SS 
field can be treated as a standing wave formed by 
superposition of electromagnetic waves propagating 
toward each other along the spherical surface of the 
drop when the condition of phase synchronism is 
satisfied. 

The analysis demonstrates that, in spite of 
different physical nature of the effects responsible for 
one or another process of simulated scattering (SRS, 
SMBS, SF), their theory is similar in general.  It is 
explained, first of all, by the fact that all non-linear 
optical effects considered here are resonance processes 
that means that the fact of their occurrence in a 
particle is connected with its resonance properties.  
So the threshold, angular, and spectral characteristics 
of all types of stimulated scattering bring a “print” 
of the resonant structure of internal fields. 

The initial equations for the theoretical analysis of 
nonlinear scattering in a particle (magnetic 
permeability μa = 1) are nonhomogeneous Maxwell 
equations in which the nonlinear part the medium 
polarizations P(r, t) induced by the pumping field 
serves as a source of the field of Raman scattered wave 

 

rot E(r, t) = – 
1
c 

∂H(r, t)
∂t  ,   div E(r, t) = 0, 

 

rot H(r, t) = 
1
c 

∂
∂t [E(r, t) + 4π P(r, t)] +

4πσ
c  E(r, t), 

 

div H(r, t) = 0. 
 

It is well known this the system can be 
transformed into the wave equations for the electric 
field strength vector in the particle E(r, t) after 
eliminating the magnetic field strength H(r, t) 

 

rot rot E(r, t) + 

1
c2 

∂2 E(r, t)
∂t2  + 

4πσ
c2  

∂E(r, t)
∂t  = 

=  –  

4π
c2  

∂2

∂t2 P(r, t). (2) 
 

The equation for the field (2) is completed by 
equations describing a particular physical mechanism 
governing the formation of a non-linearly scattered 
wave.  For  instance, they are the wave equation for 
non-linear polarization and the kinetic equation for the 
populations’ difference of the “operating” transition 
levels of a molecule of the particle’s substance 

 

∂2 P(r, t)
∂t2  + 

2
T2

 
∂ P(r, t)

∂t  + ω
2
vib P(r, t) = 

 

=  
2 N0 ωvib⏐μ12⏐

3 �
 ΔN E(r, t), 

∂(DN)
∂t  + 

DN – DNe

T1
 = 

2

N0 � wvib

 
∂ P(r, t)

∂t  E(r, t). (3) 

 

 

Here N0 is the concentration of molecules in the 
substance, ωvib is the frequency of the vibrational 
transition of a molecule, ⏐μ12⏐ is the dipole matrix 
element, T1 and T2 are the longitudinal and 
transversal relaxation times respectively, ΔNe is the 

equilibrium value of the difference of populations, � 

is the Planck constant. 
For the process of stimulated fluorescence the 

corresponding equations have the form20 
 

∂2 P(r, t)
∂t2  + 

2
T2

 
∂ P(r, t)

∂t  + 
⎝
⎛

⎠
⎞1

T
2
2

 + ω
2
f  P(r, t) =  

 

= – 
2 NM ωf⏐μ12⏐

3 �
 ΔN E(r, t), 

 

∂DN
∂t  = 

2 E(r, t)

� ωvib NM

 ⎝
⎛

⎠
⎞∂ P(r, t)

∂t  + 

1
T2

 P(r, t)  – D (ΔN – ΔNe),  

  (4) 
 

where NM is the concentration of “active” molecules 
in the substance of a particle, ωf is the frequency of 
fluorescence, D is the factor proportional to the 
probability of stimulated transitions in the molecule. 

To describe the SMBS process, it is necessary to 
use the wave equation for the light field (2) jointly 
with the equation for the pressure in a medium p(r, t) 
 

∇
2
p(r, t)– 

1

c
2
s

 

∂2
 

p(r, t)

∂t2  + 

2
 

ΓB

c
2
s

 

∂p(r, t)
∂t =

γ
8π ∇

2
 ⏐E(r, t)⏐

2    
(5) 

 

and the expression connecting the pressure and non-
linear polarization of the medium PN 
 

PN(r, t) = [γ/(4π c
2
s ρa)] p(r, t) E(r, t). 

 

Here cs, ΓB are the velocity and attenuation 
coefficient of hypersound in a liquid, γ is the 
electrostriction constant, ρa is the density of the 
particle’s substance. 

Then, the solution of the wave equation for the 
field (2) is represented as an expansion over natural 
electromagnetic vibrational modes of the resonator 
Enl(r) with natural frequencies ωnl 
 

E(r, t) = ∑
n,l

 

 

Anl(t) Enl(r), (6) 

 

where the coefficients Anl(t) satisfy the equations 
 

d2
 Anl(t)

dt2  + 4πσef 
d Anl(t)

dt  + ω
2
nl Anl(t) = 

 

= – 4π 
⌡
⌠

Va

 

 
Enl(r′) 

∂2 P(r′, t)
∂t2  dr′. (7) 

 



316  Atmos. Oceanic Opt.  /April–May  1997/  Vol. 10,  Nos. 4–5 Yu.E. Geintz and A.A. Zemlyanov 
 

Integration in Eq. (7) is performed over the volume 
of the particle.  Here we introduce the coefficient σef 
which has the meaning of the effective absorption 
taking into account the losses of light wave caused 
not only by the absorption in the substance but also 
due to escape of radiation from the resonator-particle. 

The expansions over eigenfunctions similar to 
Eq. (6) are performed also for nonlinear polarization 
PN(r, t) and pressure p(r, t).  In the latter case, 

 

p(r, t) = ∑
n,l,m

 

 

℘nlm(t) Πnlm(r). 

 

The solution of Eq. (7) jointly with the Eqs. (3)–(5) 
and corresponding initial and boundary conditions 
enable one to comprehensively describe the 
stimulated scattering process in a particle. 

Let us note that the system of partial TE and 
TM waves is usually taken as eigenfunctions in 
Eq. (6).  Their form is defined by Mie solution to the 
problem of plane electromagnetic wave diffraction on 
a sphere (1) 

 

Enl(r)= 

=
⎩
⎨
⎧

 

bn(xa) Mnl(r) ψn(kr)  for ÒE waves,

1/k cn(xa) ∇ × [Mnl(r) ψn(kr)] for ÒÌ waves.
 

 

Under the condition that the change in the 
pressure is zero on the surface of the particle (what is 
a sufficiently good approximation in studying 
SMBS11), the functions Ïnlm(r) have the form 

 

Ïnlm(r) = Cnm ψn(αnm r/r0) Ynl (θ, ϕ), 

 

where Cnm are normalization factors; αnm is the mth 
zero of the Bessel spherical function ψn. 

 

3. THE ENERGY THRESHOLD OF 

STIMULATED SCATTERING AT RESONANCES 

OF THE INTERNAL OPTICAL FIELD OF 

PARTICLES 
 

As in the case of any nonlinear process, there is 
a threshold intensity of incident radiation for the 
stimulated scattering in particles to occur.  The effect 
is not observed at lower intensity.  The value of the 
threshold intensity can be obtained from the integral 
form of the electromagnetic energy conservation 
principle in a particle (at the frequency of scattered 
wave ωS).  It follows from the Maxwell equations 

 

dWS/dt = Pg – (Pa + Pr). (8) 
 

Here we introduce the following designations:  

WS = 

1
16 π 

⌡⌠

Va

 

 

(εa ES(r, t) E*S(r, t) + HS(r, t) H*S(r, t)) dr′ is the 

electromagnetic field energy accumulated in the volume 
of the drop during the oscillation period T = 2π/ω0, ω0 
is the frequency of light incident onto the particle,  

Pr = 
c

8 π 
⌡⌠

Sa

 

 

[ES(r, t) × HS(r, t)] nr do′ is the average 

power of radiative losses through the surface of the 
droplet during the period T, 

Pa = 
σ
2 
⌡⌠

Va

 

 

ES(r, t) E*S(r, t) dr′ is the average power of 

heat losses inside the particle,  

Pg = – 

⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠

Va

 

 

ES(r, t) 
∂P
∂t  dr′

T

  is the average power 

of sources of the Stokes wave, nr is the external 
normal to the surface of the particle, εa is the 
dielectric permeability of the particle substance. 

The electric field inside the particle is 
represented as a sum of quasimonochromatic fields 
 

2E(r, t) = EL(r, t) eiω
0
t
 + ES(r, t) e

iω
S
t

 + compl.ñonjug., 
 

where EL, ES are the complex slowly varying field 
amplitudes at the pump frequency and Stokes 
radiation, respectively. 

Let us introduce the concept of Q-factor of the 
resonator by the expression 

 

Q = ωS WS/(Pa + Pr). 
 

The condition of SS appearance is defined as 
 

dWS/dt = 0. 
 

For the threshold intensity of pumping radiation 
above which the stimulated scattering takes place, we 
have 

 

IS = 2π na/(gS Qnl λS Bc). (9) 
 

Here λS is the wavelength of scattered light, gS is the 
gain coefficient of the corresponding stimulated 
scattering process, Bc is the integral coefficient 
taking into account the spatial overlapping of 
interacting fields inside the particle.12  The threshold 
values IS are as lower for better overlapping. 

Besides, the value Bc depends also on whether or 
not the pumping field is in resonance.  If the incident 
field frequency corresponds to the frequency of a 
resonance mode of the particle; the so-called “double 
resonance” occurs.3  It means that there exist both 
the resonance for the Stokes wave λS and for the 
pumping wavelength λL.  Let us note that this 
situation is rather hard to be realized due to small 
width of the resonance lines of the particles (for 
water drops, this width is of the order of 3 cm–1).  In 
the most frequent situation of a single resonance, the 
value Bc only insignificantly differs from unity in the 
whole range of particles’ dimensions studied.  
However, the values Bc sharply increase at a “double 
resonance”.  They reach the value ~103 for high Q-
factor resonances. 
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The threshold values IS for SRS and SMBS 
processes in water drops of different radius (the 
absorption index κa = 10–8) are presented in Fig. 2.  
The threshold of optical breakdown for water drops3 is 
also presented here.  As to the SMBS, three cases are 
considered.  They are “single” resonance (the resonance 
for the Stokes wave only), “double” resonance (for the 
pumping wave and the scattered wave) and “triple” 
resonance (the pumping, scattered, and acoustic wave).  
Note that, in the latter case, the value of the threshold 
SMBS intensity has anomalously small value because 
the acoustic wave induced by pumping radiation falls 
into one of the acoustic resonances of the particle that 
leads to a sharp increase of the disturbance amplitude 
of the dielectric constant of the medium and, 
consequently, non-linear polarization (according to 
Eq. (5)). However, this “triple” resonance is even more 
rare and seems to be obtained only by simultaneous 
laser and acoustic excitation of a drop with 
corresponding frequencies.13 

 

40 80 120 160 200
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

x
a

5

4

3

2

1

I
s
 , W / cm

2

 

FIG. 2.  The threshold of SRS(1) and SMBS(2–4) 
in water drops of different dimensions: “single” 
resonance (1,2), “double” resonance (3), and 
“triple” resonance (4).  The curve (5) is the 
threshold of optical break-down of particles. 
 

In general, Fig. 2 shows that the SMBS threshold 
intensity is always lower than the SRS threshold 
intensity.  It is connected with higher value of the 
SMBS gain (gS ≈ 5⋅10–3 cm/MW, see Ref. 2) as 
compared with the corresponding gain coefficient for 
SRS (gS ≈ 10–3 cm/MW, see Ref. 1).  As to the 
dependence of IS on the drop radius, the figure 
demonstrates that the threshold intensity sharply 
increases with the decrease of the drop size, due to 
similar decay of the radiative Q-factor for small 
particles (see Fig. 1).  For xa ≥ 100, IS in fact does not 
depend on the radius of liquid particles since the Q-
factor is limited by the losses due to absorption in 
liquid.  For xa ≤ 20–40, the SRS and SMBS effects can 
be suppressed by the optical breakdown inside the 
particle.1 

4.  ANGULAR STRUCTURE OF STIMULATED 

LIGHT SCATTERING BY A SPHERICAL 

PARTICLE 
 

In experiments, SS there are observed luminous 
arcs on the surface of a spherical particle, depending 
on pump intensity, forward and backward along its 
main diameter.14  These luminous regions are sources 
of the SS signal outside the particle and make the 
angular distribution of scattering which, according to 
experiments,15,16 significantly differs from the 
diagram of elastic scattering. 

Let us consider the angular structure of the SS 
field far from a spherical particle and study its 
dependence on the spatial structure of the internal 
Stokes field. 

The problem considered can be formulated as a 
problem of emission from a spherical volume with a 
given spatial distribution of the electromagnetic field 
into the space surrounding the particle.  The 
mathematical formulation of the problem is based on 
the Helmholtz equation for the vector potential of 
the electromagnetic field A(r, t) 

 

∇
2
 A(r, t) + (ω

2
S/εa) A(r, t) = – Ja(r, t) (10) 

 

provided that divA(r, t) = 0.  Here Ja(r, t) =εa 

∂ES(r, t)
∂t  

is the density of polarization currents induced by the 
internal field of the particle ES(r, t).  The field 
components (ES(r, t) ≡ E(r, t, ωS)) can be expressed 
in terms of the vector potential as follows: 
 

HS(r, t) = rot A(r, t),   ES(r, t) = – 
∂A(r, t)

∂t  . 
 

The solution of the equation (10) is known 
 

A(r, t) = i ωS εa ⌡⌠

Va

 

 

ES(r′, t)
4π R  exp (– i kS R) dr′. 

 

Here r is the radius vector of the observation point at 
which the value of the field is sought, r′ is the radius 
vector of points inside the drop, R = r – r′, kS is the 
wave vector of the Stokes wave.  The integral is 
taken over the volume of the particle Va. 

At the observation point with the radius vector 
r, the SS field is written as follows: 

 

ES(r, t) =rot rot 

⌡⌠

Va

 

 

(εa – 1) ES(r′, t)
4π εa R  exp (– i kS R) dr′.  (11) 

 

As one can see, the intergand in Eq. (11) contains 
the intensity of the electric Stokes field ES(r′, t) in a 
particle.  Its spatial configuration corresponds to one of 
the resonance modes TEn(TMn).  As it was mentioned 
above, it can be represented as a standing wave 
localized near the surface of the drop.  So, using the 
well known Mie solution (1), for instance, for the TEn-
resonant mode of the spherical resonator, we have the 
expression 

 

ES(r′, t) = AE(t) bn(xa) ψn(kS r′) [Mnm(θ, ϕ) + 

+  M*nm(θ, ϕ)]/2, (12) 
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where AE is the amplitude of the SRS wave.  A 
similar expression can be written for TMn-modes. 

By substituting Eq. (12) into Eq. (11) and 
expanding the integrand in a series over spherical 
harmonics, we finally obtain 

 

ES(r, t) ≅ 

k
2
S 

4π r AE(t) bn(xa) 

⌡⌠

Va

 

 

 ∑
l,m

 

 

2 l + 1
l (l + 1) ψn(kS r ′) × 

× ψl(kS r) Yl1(θ, ϕ) [Mnm(θ′, ϕ′) + M*nm(θ′, ϕ′)] dr′. (13) 
 

One of the results of numerical calculations by 
Eq. (13) is presented in Fig. 3 where the results on 
the angular SRS structure from an ethanol drop with 
the radius a0 = 15.1 μm irradiated by the second 
harmonic of a Nd-YAG laser (λ = 0.53 μm) are 
compared with the corresponding experimental data 
from in Ref. 15.  Experimental data are shown by 
dots.  The Stokes radiation has the wavelength 
λS = 0.65 μm.  The calculated angular dependence of 
the elastic scattering intensity is also shown here.  
Typical V-shaped angular dependence of the SRS 
signal is clearly seen in the figure.  It was also 
observed in Ref. 16. 
 

 
FIG. 3.  Experimental data15 on the angular 
SRS(1) and elastic scattering structure (4) from an 
ethanol drop of the radius 15.1 μm in the far zone.  
Solid lines are theoretical calculations of the 
angular SRS function at one-mode (2) and 
multimode (3) regime of SRS generation in a drop. 
 

The results of the study demonstrate that the 
directional pattern of SS from a particle is more 
isotropic on the whole than the diagram of the elastic 
scattering.  The angular structure of a one-mode.  SS, 
i.e., when the SS process is sustained only by a single 
natural mode of the particle, is symmetric in contrast 
to the elastic scattering.  It is a consequence of 
angular symmetry of the internal Stokes field at 
resonance with the natural vibration mode of the 
particle. 

At the same time, the situations when several 
modes simultaneously have natural frequencies close 
to the Stokes frequency ωS are possible due to high 
spectral density of natural modes in a particle.1  In 
this case, they all give a contribution into the process 
of SS development in a particle.  In such a 
multimode regime of the SS generation the angular 
distribution on the Stokes field in the far zone 
becomes asymmetric. 

 

5. RAMAN SCATTERING OF LIGHT ON 

OSCILLATIONS OF THE DROP SURFACE 

CAUSED BY PONDEROMOTIVE FORCES OF 

THE LIGHT FIELD 
 

The pondermotive forces of the electromagnetic 
field cause deformations and oscillations of 
transparent drops.6,17-19  The oscillations of the drop 
surface lead to Raman scattering of the light wave 
incident on it. 

In Ref. 21, Raman scattering by small drops 
(ka0 << 1) at free oscillations of the drop surface was 
studied theoretically for the first time.  The problem 
of Raman light scattering on an oscillating 
transparent drop was not solved for the case of 
optically large particles (ka0 ≥ 1). 

Let us consider solution of the problem based on 
the integral equation for light field, that follows 
from the Helmholtz equation (10) for the vector 
potential of the field. 

The complex electric field E1(r, t) at the 
observation point with the radius vector r is written 
as follows 

 

εa E1(r, t) = E0 e
iω

0
t–ikr

 +  
 

rot rot 
⌡⌠

Va

 

 

(εa – 1) E(r′, t) eikR

4π R  dr′, 

 

where k is the wave vector of the incident wave. 
Further consideration is performed only for a 

scattered wave.  Here 
 

Eiss(r, t) = rot rot 
⌡⌠

Va

 

 

(εa – 1) E(r′, t) eikR

4π ea R
 dr′. (14) 

 

The deformation of the drop with the radius a 
arising due to ponderomotive forces at a point with 
the spherical coordinates (θ, ϕ) is given by the 
relation 

 

a(t; θ, ϕ) – a0 = ξ(t; θ, ϕ) =  
 

= Re {∑
l,n

 

 

ξln(t) Yln(θ, ϕ) e
iΩlt }, 

 

where the value of deformation ξ is expanded over 

spherical harmonics. Here Ωl = [l(l – 1) (l + 2) β/(ρa a
3
0)]

1/2
 

are natural (Rayleigh) frequencies of the drop 
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oscillations, β is the surface tension coefficient of the 
liquid. 

Let us represent the integral over the volume of 
the deformed particle as a sum of integrals 

 

⌡⌠

Va

 

 

(εa – 1) E(r′, t) e
ikR

4π εa R  dr′ = 

⌡⌠

Va
0

 

 

(εa – 1)
 

E(r′, t) e
ikR

4π εa R  dr′ + 

 

+ 
⌡⌠

 

 

(ea – 1) E(r′, t) eikR

4π εa R
 do′ 

⌡⌠
a0

a(θ,ϕ)
 

 

 r
2
 dr′ , 

 

where Va0
 is the volume of the undisturbed sphere; 

do′ = sinθ′dθ′dϕ′. 
Under the assumption that under conditions far 

from the resonance (ξ << a0), the disturbances of the 
surface are small the electromagnetic field in the 
deformed particle E(r′, t) can be taken equal to its 
value EL(r′, t) in the absence of disturbances of the 
spherical surface.  Then, for the case of a 

quasiharmonic field EL(r, t) = E
0
L(r, t)eiω0t, in the far 

zone kr >> 1, Eq. (14) can be transformed to the 
following form 

 

Eiss(r, t) ≈ 

k
2
 (ea – 1)
4π εa r

 e
iω

0
t–ikr

⎣
⎡

 

 

⌡⌠

Va
0

 

 

E
0
L(r′, t) e

ikR′cosϑ
 dr′ + 

 

+ a
2
0 

⌡⌠
 

 

E
0
L(a0, θ′, ϕ′, t) Re 

⎩
⎨
⎧

⎭
⎬
⎫

∑
l,n

 

 

 ξln(t) Yln(θ′, ϕ′) e
iΩlt

 do′
⎦
⎤

 

 

,  

  (15) 
 

where ϑ is the angle between the vectors r and r′.  
The first summand in the right-hand side of Eq. (15) 
is usual elastic scattering at the frequency of incident 
radiation wave ω0; at the same time, the second 
summand is the Raman scattering on the surface 
waves of the particle with the frequencies ω0 ± Ωl. 

The expansion coefficients of the full 
displacement of the drop surface ξln(t) satisfy the 
oscillation equation in the right-hand side of which 
the coercive force f(t; a0) is standing 
 

d
2
ξln

dt
2  + 

2
tl
 
dξln

dt  + Ω
2
l ξln = 

l fln

ρa a0
 . (16) 

 

Here fln = 
⌡⌠

 

 

f(t, a0) Y*ln(θ, ϕ) do′, tl = 

a
2
0 

2ν(2l + 1) (l – 1)
 

is the characteristic time of oscillation attenuation 
due to viscous forces, ν is the kinematic viscosity of 
the liquid.  The initial conditions for Eq. (16) have 

the form ξln(0) = 
dξln(0)

dt  = 0. 

The coercive force f is a jump of the normal 
component of the electric field strength on the drop 
surface 

f=
εa – 1

8π [(εa – 1) (E(a0, θ, ϕ, t) nr)
2
+(E(a0, θ, ϕ, t))

2
].(17) 

 

In this expression, one should take into account 
only the low frequency components as compared with 
the frequency of the exciting light field.  As seen 
from Eq. (17), the form of the function f(a0, θ, ϕ, t) 
depends on the angular structure of the internal 
electromagnetic field on the drop surface.  The 
structure is given by the Mie solution (1). 

Numerical calculations made by Eqs. (16)–(17) 
for water drops with different diffraction 
parameters17 demonstrate that, for small particles 
(xa << 1), the coercive force has maxima at the poles 
of the drop, in correspondence with the internal 
optical field distribution.  For large drops (xa > 1), 
they shift to equatorial zones. 

This leads to the fact that the initial phase of 
oscillations of small drops differs from that of large 
drops by π/2.  Small particles are deformed along 
the direction perpendicular to the direction of 
incident radiation, and large particles are deformed in 
parallel to the action.  The amplitudes of oscillations 
are also different.  For instance, ξmax/a0 = 3⋅10–5 for 
water drops with xa = 0.3 (the incident radiation has 
the wavelength λL = 0.53 μm), and ξmax/a0 = 10–3 
for xa = 3 if the radiant flux density is 
I0 = 108 W/cm2 and its duration is tp = 10–7 sec. 

When the drop is irradiated by radiation 
modulated at the frequency Ωex ~ Ωl, the drop 
oscillations become stimulated, and their frequency 
corresponds to the coercive force frequency after the 
transition to a steady state.  This process is 
demonstrated in Fig. 4 where the value of relative 
displacement ξ(t)/a0 of the surface of a water drop 
with radius a0 = 5 μm in the directions θ = 180° and 
θ = 90° is presented as a function of time.  The radiant 
flux density was 107 W/cm2.  The figure presents three 
situations: modulation frequency is lower than the 
frequency of drop oscillation at the fundamental mode, 
Ωex/Ω2 = 0.1 (Fig. 4a); the modulation frequency is 
higher than the fundamental mode frequency, 
Ωex/Ω2 = 1 (Fig. 4c); the case of resonant excitation of 
oscillations, Ωex/Ω2 = 2 (Fig. 4b). As follows from the 
figure, the oscillation amplitude is essentially higher in 
the latter case, and it continues to grow in time what 
can cause the destruction of the particle under long 
action.19 

An example of the numerical calculations of the 
intensity of a scattered light wave (λL = 0.53 μm, 
continuous radiation), namely, at oscillations of the 
surface of a water drop of radius a0 = 20 μm, is 
presented in Fig. 5.  The parameters of incident 
radiation pulse exciting the oscillations are as follows: 
I0 = 108 W/cm2, tp = 10–7 s.  Figure 5a shows the 
function ξ(t)/a0 along the direction θ = 180°.  
Figure 5b presents the angular structure of the 
scattering signal (in the plane of the vectors k and EL) 
for the time moment t = 13.5 μs.  Figure 5c presents 
the scattered signal along three directions (backwards, 
transversally, and in the direction of the primary 
rainbow) as a function of time.  Dashed lines denote 
the signal of elastic scattering on an nondisturbed 
particle.  As follows from Fig. 5a, after the end of the 
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laser pulse action the drop exhibits free damping 
oscillations at the fundamental (the lowest) natural 
frequency Ω2 ≈ 0.3 MHz. In accordance with the 
oscillations, changes the scattered signal. Its temporal 
behavior takes the form of “flares” mentioned earlier in 
Ref. 18. The maximal changes relative to the level of 
nondisturbed scattering are observed along the 
direction transverse to the incident radiation and the 
direction of rainbow. This is natural because these are 
directions that are characterized by the fact that the 
maximum changes of the elastic scattering intensity 
with respect to angle occur here.  Thus, the 
contribution of inelastic scattering becomes appreciable 
in the angles of the minimum of elastic scattering. 

 

 

a 

 
b 

 
c 

FIG. 4. Relative displacement of a water drop of 
radius a0 = 5 μm for θ = 180° (1) and θ = 90° (2) as 
a function of time irradiated by modulated laser 
radiation (λL = 0.53 μm). The relative modulation 
frequency Ωex/Ω2 is 0.1 (a), 0.1 (b), 2 (c). 

 
 

a 

 
b 

 
c 

 

FIG. 5.  Numerical calculations of the intensity of a 
scattered light wave:  a) the relative displacement of 
a water drop of radius a0 = 20 μm as a function of 
time along the direction θ = 180° due to 
ponderomotive forces at a pulse irradiation;  b) 
angular function of radiation scattered on a water 
drop at the excitation of oscillations on its surface 
(1).  The curve (2) is the elastic scattering on a 
nondisturbed drop;  c) temporal function of radiation 
scattered on an oscillating water drop for different 
observation angles: θ = 0° (1, 1′), θ = 90° (2, 2′), 
θ = 137° (3, 3′).  The curves 1, 2, 3 are levels of the 
elastic scattering signal in the absence of oscillations. 
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CONCLUSION 
 

Let us briefly formulate the major results of 
the paper. 

Nonlinear optical SRS, SMBS, SF effects in 
transparent particles as microresonators are described 
theoretically from unified physical viewpoints. 

A relation taking into account resonance 
conditions of parametrically interacting fields for 
the energy threshold of stimulated scattering in a 
particle is established. 

The SS angular parameters are studied.  The SS 
directional pattern is shown to be less asymmetric 
along forward and backward directions. 

The effect of Raman light scattering is 
theoretically studied for oscillations of the surface of 
liquid particles of arbitrary dimensions.  The 
oscillations were induced by ponderomotive forces of 
intense light irradiation with different regimes of time 
modulation.  It is established that the effect manifest 
itself along the direction close to the rainbow 
scattering angle, and along the direction transverse to 
the incident radiation. 
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