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In this paper two types of interferometers are analyzed.  The first is based 
on a two-exposure record of a hologram of an amplitude scatterer image by 
Gabor scheme focused with a Kepler telescopic system.  The second is based on a 
two-exposure record of specklogram of a focused mat screen image.  It was 
shown both theoretically and experimentally that when performing spatial 
filtration of a diffraction field, shear interferogram is formed in the hologram 
plane that characterizes axial wave aberrations of an object under control.  In 
the case of a two-exposure specklogram reconstruction in the far diffraction zone 
a shear speckle-interferogram is formed that characterizes axial wave aberrations 
of an object under control with a doubled sensitivity at a fixed lateral shear. 

 

It was shown in Ref. 1 that two-exposure record 
of a hologram of mat screen image focused with the 
help of a Kepler telescopic optical system using an off-
axis quasiplane reference wave results in formation of a 
lateral shear interferogram in infinite bands in 
diffusively scattered fields.  In this case, before 
repeatedly exposing the photographic plate, tilt angle 
of quasiplane wavefront of coherent radiation used for 
illumination of the mat screen and tilt angle of 
reference wave were changed.  At the stage of 
hologram reconstruction, superposition of diffracted 
waves from two exposures gives rise to an interference 
pattern localized in far diffraction zone and 
characterizing wave aberrations of the optical system of 
a Kepler telescope used.  For its recording, the spatial 
filtration of reconstructed field in the hologram plane 
should be performed.  In its turn, the interference 
pattern characterizing wave aberrations of optical 
system in the channel of reference wave formation and 
in the channel of formation of wave front of radiation 
used for the mat screen illumination is localized in the 
hologram plane.  For its recording, spatial filtration of 
the diffraction field at the optical axis in the plane of 
formation of Fourier transform of the mat screen image 
should be performed. 

In this paper we analyze the peculiarities of the 
lateral shear interferogram formation in infinite 
bands for the case of two-exposure record, with a 
Kepler telescopic optical system, of a hologram of a 
focused image of an amplitude scatterer by Gabor 
method and two-exposure specklogram of focused 
image of the mat screen. 

As shown in Fig. 1a, paraxial image of a 
amplitude scatterer 1 being in the plane (x1, y1) is 
formed with a telescopic optical system comprising 
two positive lenses L1 (objective) and L2 (ocular) in 
 

the plane of photographic plate 2.  Gabor hologram 
is recorded when illuminating the scatterer with a 
coherent radiation during the first exposure.  Before 
the second exposure, the tilt angle α of the 
quasiplane wave front of radiation used for 
illumination of the amplitude scatterer, for example, 
in (x, z) plane was changed.  After photographic 
processing, the wave from the coherent light source 
used at the stage of its recording comes to the 
hologram, and in the Fourier plane 3 (Fig. 1b) the 
interference pattern is recorded when performing 
spatial filtration of the diffraction field at the optical 
axis in the hologram plane using round hole in an 
opaque screen p3.  

 

 
 

FIG. 1.  Geometry of recording (a) and 
reconstruction (b) of two-exposure Gabor hologram: 
amplitude scatterer (1); photographic plate-
hologram (2); plane of interferogram recording (3); 
lenses L1, L2, L3; aperture diaphragms p1, p2; 
spatial filter p3. 

 

 As follows from Ref. 1, in the Fresnel 
approximation, neglecting constant amplitude and 
phase factors, the complex field amplitudes 
corresponding to the first and second exposures in the 
(x4, y4) plane of photographic plate take the form: 

 

 

u1(x4, y4) ∼ [1 $ t ($μ1 x4, $μ1 y4)] exp iϕ0 ($μ1 x4, $μ1 y4) ⊗ P1(x4, y4) ⊗ P2(x4, y4) ,  (1) 
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u2(x4, y4) ∼ exp ($ik μ1 x4 sinα) {[1 $ t ($μ1 x4, $μ1 y4)] exp iϕ0 ($μ1 x4 + a, $ μ1 y4) ⊗ exp (ik μ1 x4 sinα) × 
× P1(x4, y4) ⊗ exp (ik μ1 x4 sinα) P2(x4, y4)} ,  (2) 

 

where ⊗ is the symbol of the convolution operation; k 
is the wave number; μ1 = f1/f2 is the scale 
transformation coefficient; f1 is the lens L1 focal 
length; f2 is the lens L2 focal length; t(x1, y1) is the 
real random function of coordinates characterizing the 
amplitude of scattered absorption; ϕ0(x1, y1) is the 
determinate function characterizing phase distortions of 
the wave front of radiation used for illuminating the 
amplitude scattered due to aberrations of an optical 
system generating it; a is the wave front shift due to 
change of its tilt before the second exposure of the 
photographic plate; 

P1(x4, y4) =
⌡
⌠

$∞

 
 

 

  
⌡
⌠
∞

 

 

p1(x2, y2) exp iϕ1(x2, y2) × 

× exp[$ ik (x2 x4 + y2 y4)/f2] dx2 dy2 is the Fourier 
transform of generalized function  

p1(x2, y2)expiϕ1(x2, y2) of the pupil2 of the lens L1 
allowing for its axial wave aberrations;  
 

P2(x4, y4) = ⌡
⌠

$∞

 
 

 

   
⌡
⌠
∞

 

 

p2 (x3, y3) exp iϕ2 (x3, y3) × 

× exp[$ik (x3 x4 + y3 y4)/f2] dx3 dy3 is the Fourier 
transform of the generalized function of pupil of the 
lens L2. 

Let the photographic layer being exposed to light 
with the intensity I(x4, y4) = u1(x4, y4) × 

× u*1(x4, y4) + u2(x4, y4) u
*

2(x4, y4), be processed with 
obtaining the negative at a straight-line portion of 
the characteristic curve of blackening.  Then under 
the condition t(x1, y1) << 1 (Ref. 3) the transmission 
amplitude τ(x4, y4) of the hologram shown in Fig. 1b 
is determined from the expression 

 

 

τ(x4, y4) ~ [exp iϕ0 ($ μ1 x4, $ μ1 y4) ⊗ P1(x4, y4) ⊗ P2(x4, y4)] [t ($ μ1 x4, $ μ1 y4)  exp $ iϕ0 ($ μ1 x4, $μ1 y4) ⊗ 

⊗ P*
1(x4, y4) ⊗ P*

2(x4, y4)] + [exp $iϕ0 ($μ1 x4, $μ1 y4) ⊗ P*
1(x4, y4) ⊗ P*

2(x4, y4)] [t ($ μ1 x4, $μ1 y4) × 
× exp iϕ0 ($ μ1 x4, $ μ1 y4) ⊗ P1(x4, y4) ⊗ P2(x4, y4)] + [exp iϕ0 ($μ1 x4 + a, $ μ1 y4) ⊗ 
⊗ exp (ik μ1 x4 sinα) P1(x4, y4) ⊗ exp (ik μ1 x4 sinα) × P2(x4, y4)] [t ($μ1 x4, $ μ1 y4) exp $ iϕ0 ($ μ1 x4, $μ1 y4) ⊗ 

⊗  exp ($ik μ1 x4 sinα) P*
1(x4, y4) ⊗ exp ($ik μ1 x4 sinα) P*

2(x4, y4)] + [exp $iϕ0 ($ μ1 x4 + a, $μ1 y4) ⊗ 

⊗ exp ($ik μ1 x4 sinα)  P*
1(x4, y4) ⊗ exp ($ik μ1 x4 sinα) P*

2(x4, y4)] [t ($ μ1 x4, $ μ1 y4)  × 
× exp iϕ0 ($μ1 x4 + a, $μ1 y4) ⊗ exp (ik μ1 x4 sinα) P1(x4, y4) ⊗ exp (ik μ1 x4 sin α) P2(x4, y4)] ,   (3) 
 

in which the regular component of light transmission 
is missing, because in the following consideration it 
will result only in distribution of illumination over a 
small spot in the observation plane. 

As follows from Ref. 4, distribution of the complex 
amplitude of diffusely scattered field component in the 
rear focal plane (x5, y5) of the lens L3 with the focal 
length f3 (see Fig. 1b) can be expressed as 

u(x5, y5) ∼ ⌡
⌠

$∞

 
 

 

   
⌡
⌠
∞

 

 

τ (x4, y4) exp  ⎣
⎡

⎦
⎤$ 

ik

f3
 (x4 x5 + y4 y5) dx4  dy4   ⊗ P3 (x5,  y5) ,  (4) 

 

where P3(x5, y5) = 
⌡
⌠

$∞

 
 

 

   
⌡
⌠
∞

 

 

p3(x4, y4) exp[$ik  (x4 x5  +  y4 y5) / f3]  dx4  dy4  

 

is the Fourier transform of the transmission function of 
the opaque screen p3 with a round hole.5 

Having substituted Eq. (3) into Eq. (4), we 
obtain 

 

u(x5, y5) ∼ {{Φ1(x5, y5) p1(μ2 x5, μ2 y5) p2(μ2 x5, μ2 y5)  exp i[ϕ1 ($μ2 x5, $μ2 y5) + ϕ2 ($μ2 x5, $μ2 y5)]} ⊗{[F(x5, y5) ⊗  
 

⊗ Φ2(x5, y5)] p1(μ2 x5, μ2 y5) p2(μ2 x5, μ2 y5)  exp $i[ϕ1 (μ2 x5, μ2 y5) + ϕ2 (μ2 x5, μ2 y5)]} + {Φ2(x5, y5) p1(μ2 x5, μ2 y5) × 
 

× p2(μ2 x5, μ2 y5) exp $i [ϕ1 (μ2 x5, μ2 y5) + ϕ2 (μ2 x5, μ2 y5)]} ⊗ {[F(x5, y5) ⊗  Φ1(x5, y5)] p1(μ2 x5, μ2 y5) × 
 

× p2(μ2 x5, μ2 y5) exp i [ϕ1 ($μ2 x5, $μ2 y5) + ϕ2 ($μ2 x5, $ μ2 y5)]} + {Φ3(x5, y5) p1(μ2 x5 

$ b, μ2 y5) p2(μ2 x5 $ b, μ2 y5) × 
 

× exp i [ϕ1 ($μ2 x5 + b, $ μ2 y5) +  ϕ2 ($μ2 x5 + b, $μ2 y5)]} ⊗ {[F(x5, y5) ⊗ Φ4(x5, y5)]  p1(μ2x5 + b, μ2y5) ×  
 

× p2 (μ2 x5 + b, μ2 y5) exp $i [ϕ1(μ2 x5 + b, μ2 y5) +  ϕ2(μ2 x5 + b, μ2 y5)]} + {Φ4(x5, y5) p1(μ2 x5 + b, μ2 y5)×   
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× p2(μ2 x5 + b, μ2 y5)  exp $i [ϕ1 (μ2 x5 + b, μ2 y5)+ ϕ2 (μ2x5 + b, μ2 y5)]} ⊗ {[F(x5, y5)  ⊗ Φ3(x5, y5)] × 
 

× p1(μ2x5 $ b, μ2y5) p2(μ2 x5 $ b, μ2 y5) exp i [ϕ1($μ2 x5 + b, - $ μ2 y5) +  ϕ2($μ2 x5 + b,$ μ2 y5)]}} ⊗  P3(x5, y5) ,  (5) 

 

where μ2 = f2/f3 is the scale transformation coefficient; b = f1sinα is the shift value; 
 

F(x5, y5) = ⌡
⌠

$∞

 
 

 

   
⌡
⌠
∞

 

 

t ($μ1 x4, $μ1 y4) exp[$ik (x4 x5 + y4 y5)/f3] dx4 dy4 ;  

Φ1(x5, y5) = ⌡
⌠

$∞

 
 

 

   
⌡
⌠
∞

 

 

exp iϕ0 ($μ1 x4, $μ1 y4) exp[$ik (x4 x5 + y4 y5)/f3] dx4 dy4 ;  

Φ2(x5, y5) = ⌡
⌠

$∞

 
 

 

   
⌡
⌠
∞

 

 

exp $iϕ0 ($μ1 x4, $μ1 y4) exp[$ik (x4 x5 + y4 y5)/f3] dx4 dy4 ;  

Φ3(x5, y5) = ⌡
⌠

$∞

 
 

 

   
⌡
⌠
∞

 

 

exp iϕ0 ($μ1 x4 + a, $μ1 y4) exp [$ik (x4 x5 + y4 y5)/f3] dx4 dy4 ;  

Φ4(x5, y5) = ⌡
⌠

$∞

 
 

 

   
⌡
⌠
∞

 

 

exp $iϕ0 ($μ1 x4 + a, $μ1 y4) exp [$ik (x4 x5 + y4 y5)/f3] dx4 dy4  

 

are Fourier transforms of the corresponding 
functions. 

If the period of the function expiϕ0($μ1x4, $μ1y4) 
is greater than the size of a subjective speckle, in the 
photographic plate plane determined by the width of 
the function P1(x4, y4)⊗P2(x4, y4), then we can  
 

assume that Φ1 = Φ2 = Φ3 = Φ4 = δ(x5, y5), where 
δ(x5, y5) is the Dirac delta-function.  Then, taking 
into account the condition d1 = μ1d2 where d1 and d2 
are the diameters of the aperture diaphragms of lenses 
L1 and L2, respectively (Fig. 1a), Eq. (5) takes the 
form 

 

u(x5, y5) ∼ { p2(μ2 x5 , μ2 y5) exp $ i [ϕ1 (μ2 x5, μ2 y5) +  ϕ2 (μ2 x5, μ2 y5)] + p2(μ2 x5 , μ2 y5) × 
 

× exp i [ϕ1 ($μ2 x5, $ μ2 y5) +  ϕ2 ($μ2 x5, $μ2 y5)] + p2(μ2 x5 + b, μ2 y5) exp $ i [ϕ1 (μ2 x5 + b, μ2 y5) + 
 

+  ϕ2 (μ2 x5 + b, μ2 y5)] + p2(μ2 x5 $ b, μ2 y5) exp i [ϕ1 ($μ2 x5 + b,$ μ2 y5) +  
 

+ ϕ2 ($μ2 x5 + b, $μ2 y5)]} F(x5, y5)   ⊗ P3(x5, y5) .  (6) 
 

As follows from Eq. (6), within the region where the 
functions p2(μ2 

x5 $ b, μ2 

y5) and p2(μ2 

x5 + b, μ2 

y5)  
overlap, identical subjective speckles of two 
exposures of (+1) and (–1) diffraction orders overlap 
that gives rise to correlation of speckle fields in the 
observation plane and to formation of an interference 
pattern.6  Really, if the period of the function  
exp

 

$ i [ϕ1 (μ2 x5, μ2 y5) + ϕ2(μ2 x5, μ2 y5)] +   
 

+ exp i [ϕ1($ μ2 x5, $μ2 y5) + ϕ2($μ2 x5, $μ2 y5)] +  

+ exp $i [ϕ1(μ2 x5 + b, μ2 y5) + ϕ2 (μ2 x5 + b, μ2 y5)] +  
 

+ exp i [ϕ1 ($μ2 x5 + b,$ μ2 y5) + ϕ2 ($μ2 x5 + b, $
 μ2  y5)] is greater than the subjective speckle size 
determined by the width of the function P3(x5, y5), 
then it can be removed from the convolution integral.  
Then within the region of images overlapping of 
output pupil of the telescopic optical system the 
complex field amplitude in the observation plane is 
determined by the expression 

 

 

u(x5, y5) ∼ {exp$i[ϕ1(μ2 x5, μ2 y5) + ϕ2 (μ2 x5, μ2 y5)] + exp i[ϕ1($μ2 x5,$ μ2 y5) + ϕ2($μ2 x5,$ μ2 y5)] +  
 

+ exp$i[ϕ1(μ2 x5 + b, μ2 y5) + ϕ2(μ2 x5 + b, μ2 y5)] + exp i [ϕ1($μ2 x5 + b, $ μ2 y5) + ϕ2($μ2 x5 + b, $ μ2 y5)]} × 
 

×[F(x5, y5) ⊗ P3(x5, y5)] .  (7) 
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Since the functions ϕ1(x2, y2) and ϕ1(x3, y3) are 
even, illumination distribution in the observation  
 

plane 3 (see Fig. 1b) takes the form 

I(x5, y5) ∼ 

⎩⎪
⎨
⎪⎧

 

 

{1 + cos [2ϕ1 (μ2 x5 , μ2 y5) +  2ϕ2 (μ2 x5 , μ2 y5)]} × 

 ×

⎩⎪
⎨
⎪⎧

 

 

 1 + cos 
⎣
⎢
⎡

⎦
⎥
⎤∂ϕ1 (μ2 x5,  μ2 y5)

∂ μ2 x5

 b
 
+

 
∂ϕ2 (μ2 x5,  μ2 y5)

∂μ2 x5

 b  

⎭⎪
⎬
⎪⎫

 

 

 

⎭⎪
⎬
⎪⎫

 

 

 × ⏐F(x5, y5)   ⊗ P3(x5, y5)⏐
2
 , 

 (8) 
where 
 
∂ϕ1 (μ2 x5,  μ2 y5)

∂ μ2 x5

 b  = ϕ1 (μ2 x5 + b,  μ2 y5) $ ϕ1(μ2 x5,  μ2 y5) , 

 

∂ϕ2 (μ2 x5,  μ2 y5)

∂ μ2 x5

 b  = ϕ2 (μ2 x5 + b,  μ2 y5) $ ϕ2(μ2 x5,  μ2 y5) . 

 

It follows from Eq. (8) that the subjective 
speckle structure is modulated by the interference 
bands.  Interference pattern consists of equally 
wide bands7 characterizing spherical aberrations of 
the telescopic optical system of Kepler type and 
lateral shear bands corresponding to differential 
interferometry and also characterizing spherical 
aberrations of an object under control. 

For the case of a two-exposure recording of a 
specklogram of a focused image of a mat screen being 
at the plane (x1, y1) (see Fig. 1a) and characterized by 
the complex transmission amplitude t(x1, y1), which is 
random function of coordinates, before the second 
exposure of the photographic plate 2, tilt angle of the 
quasiplane wave front of radiation used for its 

illumination also changes as in the former case. After 
photographic processing, the coherent wave from the 
light source used at the stage of its recording comes to 
the specklogram 2 (see Fig. 1b), and speckle-
interferogram is recorded in the Fourier plane 3. 

Based on the assumptions that the period of 
the function exp iϕ0($μ1 x4, $μ1 y4) is greater than 
the size of a subjective speckle, in the plane of the 
photographic plate, determined by the width of the 
function P1(x4, y4) ⊗ P2(x4, y4) and that the 
negative was processed at a straight-line portion of 
the characteristic curve of blackening, the 
transmission amplitude of a two-exposure 
specklogram can be written as 

 

τ′(x4, y4) ∼ [t($μ1 x4, $μ1 y4) ⊗ P1(x4, y4) ⊗ P2(x4, y4)] [t*($μ1 x4, $μ1 y4) ⊗ P*
1(x4, y4) ⊗ P*

2(x4, y4)] +  
 

+ [t($μ1 x4, $ μ1 y4) ⊗ exp (ik μ1 x4 sin α) P1(x4, y4) ⊗ exp(ik μ1 x4 sin α) P2(x4, y4)] [t*($μ1 x4, $μ1 y4) ⊗  
 

⊗ exp($ik μ1 x4 sin α) P*
1(x4, y4) ⊗ exp($ik μ1 x4 sin α) P*

2(x4, y4)] ,  (9) 
 

where the regular component of light transmission 
is missing.  Then the distribution of complex 
amplitude of a diffusely scattered field component 

in the rear focal plane of the lens L3 (see Fig. 1b) 
is determined by the expression 
 

 

u′(x5, y5) ∼ {{F1(x5, y5) p1(μ2 x5, μ2 y5) p2(μ2 x5, μ2 y5) exp i[ϕ1($μ2 x5,$μ2 y5) + ϕ2($μ2 x5, $μ2 y5)]} ⊗ {F2(x5, y5) × 
 

× p1(μ2 x5, μ2 y5) p2(μ2 x5, μ2 y5) exp $i[ϕ1(μ2 x5, μ2 y5) + ϕ2 (μ2 x5, μ2 y5)]} + {F1(x5, y5) p1(μ2 x5 $ b, μ2 y5) × 
 

× p2(μ2 x5 $ b, μ2 y5) exp i[ϕ1 ($μ2 x5 + b,$μ2 y5) + ϕ2 ($μ2 x5 + b,$μ2 y5)]} ⊗ {F2(x5, y5) p1(μ2 x5 + b, μ2 y5) × 
 

× p2(μ2 x5 + b, μ2 y5)  exp $i[ϕ1 (μ2 x5 + b, μ2 y5) + ϕ2 (μ2 x5 + b, μ2 y5)]}} ⊗ P3(x5, y5) ,  (10) 
 

where 
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F1(x5, y5) = ⌡
⌠

$∞

 
 

 

   
⌡
⌠
∞

 

 

 t ($μ1 x4, $μ1 y4) exp[$ik (x4 x5 + y4 y5)/f3] dx4 dy4 ;  

F2(x5, y5) = ⌡
⌠

$∞

 
 

 

   
⌡
⌠
∞

 

 

t* ($μ1 x4, $μ1 y4) exp[$ik (x4 x5 + y4 y5)/f3] dx4 dy4  

are Fourier transforms of a the corresponding 
functions. 

Since Fourier transform of a complex-conjugate 
function equals the complex-conjugate Fourier  
 

transform of the initial function with the opposite 
sign of the argument, F2(x5, y5) = F*

1(–x5, –y5), for 
maximum value of autocorrelation in Eq. (10) we 
obtain 

u′(x5, y5) ∼  
⎩⎪
⎨
⎪⎧ 

 ⎩
⎨
⎧

⎭
⎬
⎫

1 + exp$i ⎣
⎡

⎦
⎤∂ϕ1 (μ2 x5,  μ2 y5)

∂ μ2 x5

 2b + 
∂ϕ2 (μ2 x5,  μ2 y5)

∂ μ2 x5

 2b   × 

× 
⎭⎪
⎬
⎪⎫

[F1(x5, y5)
 
⊗

 
F*

1($x5, $y5)]  ⊗ P3(x5, y5) .  (11) 

 

 

If the period of the function 

1 + exp$i ⎣
⎡∂ϕ1 (μ2 x5,  μ2 y5)

∂μ2 x5

 2b +

⎦
⎤

+ 
∂ϕ2 (μ2 x5,  μ2 y5)

∂ μ2 x5

 2b   

is at least by an order of magnitude greater than the 

size of a subjective speckle in the observation plane 
determined by the width of the function P3(x5, y5), 
then it can be removed from the integral in Eq. (11).  
Then the distribution of illumination in the plane of 
recording 3 (see Fig. 1b) is determined by the 
expression 

 

I′ (x5, y5) ∼ 
⎩
⎨
⎧

⎭
⎬
⎫

1 + cos ⎣
⎡

⎦
⎤∂ϕ1 (μ2 x5,  μ2 y5)

∂ μ2 x5

 2b + 
∂ϕ2 (μ2 x5,  μ2 y5)

∂ μ2 x5

 2b   ⏐F1(x5, y5) ⊗ F*
1($x5, $y5) ⊗ P3(x5, y5)⏐

2
 ,

 (12) 
 

which describes the subjective speckle structure 
within the diffraction halo modulated by the 
interference fringes.  Interference pattern looks like a 
lateral shear interferogram in infinite bands which 
characterizes spherical wave aberrations of an object 
under control.  And the sensitivity of the speckle 
interferometer increases twice for a fixed value of a 
lateral shear. 

The mechanism of formation of a lateral shear 
speckle interferograms with increase in sensitivity is 
in a two fold increase of the width of spatial 
frequency spectrum of the waves diffusely scattered 
by the specklogram.8  Naturally, at specklogram 
recording due to quadratic character of the detection, 
phase information is lost but its part remains that 
allows reconstructing the direction of the components 
of the scattered field.9  Since the region of variable 
values, at which autocorrelation interval in Eq. (10) 
does not equal zero, is determined by a doubled 
width of the output pupil of the Kepler telescope, 
the length of the diffraction halo in the observation 
plane (μ2 = 1) is doubled.  Consequently, an increase 
in the angular spectrum of waves scattered by the 
specklogram results in doubling of the tilt (angular 
frequency) that follows from Eq. (9) at diffraction on 
speckle structure corresponding to the second 
exposure. 

In the experiment, the two-exposure recording of 
holograms and specklograms of a focused image was 
performed on photographic plates of Mikrat VRL 
type with a He-Ne laser radiation at 0.63 μm.  The 
technique of experimental study was in comparing of 
the results of two-exposure recording of holograms by 
Gabor method and specklograms of a focused image 
with the results of a two-exposure recording of 
holograms with the use of an off-axis reference wave. 

For this, the real image of a mat screen, as in 
Ref. 7, was constructed in the photographic plate 
plane with a centered telescopic optical system 
comprising two identical positive lenses with the 
focal length f1 = f2 = 180 mm, and the pupil 
diameter of 25 mm.  The diameter of illuminated 
area of a mat screen was 35 mm. Before the second 
exposure, tilt angle of quasiplane wave front of a 
radiation used for illuminating the mat screen was 
changed as well as the tilt angle of the off-axis 
quasiplane reference wave.1 

Figure 2a shows shear interferogram in infinite 
bands which was recorded in the focal plane of 
camera’s lens with focal length of 50 mm when 
performing spatial filtration of diffraction field at 
the optical axis in the hologram plane by 
reconstructing it by small-aperture (≈ 2 mm) laser 
beam. It characteristic spherical aberration in 
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paraxial focus of controlled optical system for 
α = 28′ ± 10″. 

 

 
 a b 
 

FIG. 2.  Lateral shear interferograms corresponding 
to two-exposure hologram recording: by Leit-
Upatnieks method (a), by Gabor method (b). 

 

Then in the object plane the amplitude scatterer 
was set in place of the mat screen, and two-exposure 
recording of hologram by Gabor scheme was 
performed for α = 28′ ± 10″.  The view of interference 
pattern recorded in the focal plane of camera’s lens 
when performing spatial filtration of diffraction field 
at the optical axis in the hologram plane by 
reconstructing it by small-aperture laser beam is 
shown in Fig. 2b. 

Interference patterns shown in Fig. 3 correspond 
to the case when before performing two-exposure 
recording of the hologram the photographic plate was 
shifted from the plane of paraxial image formation by 
2.3 mm, at α = 28′ ± 10″.  They characterize spherical 
aberration of the controlled optical system with 
defocusing behind the focal plane.  In this case, as in 
Fig. 2b where concentric system of interference fringes 
characterizes spherical aberration of the telescope 
optical system, concentric system of interference fringes 
in Fig. 3b characterizes spherical aberration and 
additional defocusing.  It should be noted that when 
shifting a two-exposure Gabor hologram against the 
laser beam reconstructing it, the view of interference 
pattern is distorted due to mismatch, in direction, of 
the diffracting waves in (–1) and (+1) orders of 
diffraction.7 

 
a   b 

 

FIG. 3.  Lateral shear interferograms for the case of 
defocusing behind the focal plane.  The 
interferograms correspond to two-exposure hologram 
recording: by Leit-Upatnieks method (a) and by 
Gabor method (b). 

Two-exposure recording of specklograms of a 
focused image of a mat screen was performed with 
the use of autocollimator of VU-200 type as an object 
under control.1 

Figure 4a shows holographic lateral shear 
interferogram in infinite bands that was recorded in 
the camera’s lens focal plane when performing spatial 
filtration of the diffraction field on the optical axis 
in the plane of the hologram by reconstructing it 
using a small-aperture laser beam.  It characterizes 
spherical aberration of controlled object with 
defocusing behind the focal plane.  Before the second 
exposure of the photographic plate, tilt angle α was 
changed by 30′ ± 10″. 

The lateral shear interferogram in infinite bands 
shown in Fig. 4b corresponds to the case of 
reconstruction of the two-exposure specklogram of a 
focused mat screen image for the same value of the 
angle change before the second exposure.  It 
characterizes spherical aberration at defocusing, 
behind the focal plane, of the autocollimator optical 
system with a doubled sensitivity of the 
interferometer at a fixed lateral shear.  The lateral 
shear speckle-interferogram in Fig. 4b looks like a 

holographic lateral shear interferogram for α = 1°. 
Speckle interferogram was recorded in the 

camera’s lens focal plane when reconstructing the 
two-exposure specklogram using a small-aperture 
laser beam.  In this case, its view remains unchanged 
when shifting the specklogram against the laser 
beam, that is indicative of insensitivity of the lateral 
shear speckle interferogram to the off-axis wave 
aberration of the autocollimator optical system.  In 
addition, the known property of the Kepler 
telescopes consisting in the absence of vignetting 
(see, for example, Ref. 10) causes constant contrast 
of speckle interference pattern at specklogram 
reconstruction at a point lying both at optical axis 
and out of it.  As a result, it becomes clear that 
recording of the lateral shear speckle-interferogram is 
possible without performing spatial filtration of the 
diffraction field in the plane of specklogram of a mat 
screen image focused with a telescopic optical system. 

 

 
a   b 

 
FIG. 4.  Holographic (a) and speckle (b) lateral 
shear interferograms characterizing axial wave 
aberrations of the autocollimator optical system. 
 

Thus, based on the research conducted, we can 
conclude that, at two-exposure recording of a 
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hologram of an amplitude scatterer image, by Gabor 
method, focused with a telescopic optical system of 
Kepler type, the lateral shear interferogram, in infinite 
bands, characterizing wave aberrations of controlled 
object is formed at the stage of the hologram 
reconstruction in the far diffraction zone.  At the same 
time, for its recording it is necessary to perform spatial 
filtration of the diffraction field on the optical axis in 
the hologram plane.  In contrast to the case of the two-
exposure hologram recording with the use of an off-axis 
reference wave,11 rather low sensitivity of process of 
the hologram recording to vibrations is characteristic of 
the method considered, i.e. hologram can be recorded 
without meeting stringent requirements to mechanic 
stability of the setup. 

At two-exposure recording of a specklogram of a 
mat screen image focused with a telescopic optical 
system of Kepler type, at the stage of its reconstruction 
in the far diffraction zone the lateral shear speckle-
interferogram in infinite bands is formed that 
characterizes axial wave aberrations of controlled 
object with a doubly increased sensitivity of the 
speckle-interferometer for a fixed lateral shear.  In this 
case for speckle-interferogram recording there is no 
need to perform spatial filtration of the diffraction field 
in the specklogram plane. 
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