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The method of the effective operators is applied to the global treatment 
of the vibrational–rotational spectra of the linear CO2 and N2O triatomic 
molecules. The problems in calculations of the line centers and the line 
intensities are considered. For these purposes the models of the reduced 
effective Hamiltonians and the corresponding effective dipole moment 
operators are proposed.  The parameters of these operators are found by the 
least–square fittings of the experimental line centers and line intensities.  
Good extrapolation properties of the proposed models are demonstrated. 

 
 

1. INTRODUCTION 

 
In recent years there is observed growing interest 

in the problem of the global description of the 
vibrational–rotational spectra of the triatomic 
molecules, caused by the transitions between the 
levels of the ground electronic state, (see, for 
example, Refs. 1–20).  The interest in this problem 
is stimulated by the circumstances, that the models, 
describing globally the vibrational–rotational 
molecular spectra in the ground electronic state, can 
be used to obtain new spectroscopic information on 
the transitions between the high–excited 
vibrational–rotational states, using the experimental 
spectroscopic information on the transitions between 
the low–excited vibrational–rotational states.  Such 
an opportunity is widely used in the problem of 
high–temperature spectra of molecules. 

At present two approaches are discussed in the 
literature to the global description of the 
vibrational–rotational spectra of molecules.  The first 
approach is based on the determination of the 
potential field and the dipole moment function of a 
molecule from experimental spectra.  The second 
approach is based on the method of effective 
operators.  In the framework of the latter approach 
one constructs an effective Hamiltonian and the 
corresponding effective dipole moment operator and 
reconstructs the parameters of these effective 
operators from the experimental spectra.  

Several methods are developed in the framework 
of the former approach.  First, we draw attention to 
the so-called variation methods: the DVR method 
(the method of exact representation of the kinetic 
energy operator, Refs. 1–4), the MORBID method 

(the representation of the coordinates as Morse 
functions, Refs. 5–7), the DND method (the direct 
numerical diagonalization, Refs. 10, 21–23).  Among 
these methods the DVR method is potentially the 
most accurate method, since it does not use any 
approximations for the kinetic energy operator.  But 
it is very cumbersome for calculations.  The 
MORBID method, within which the approximations 
for the kinetic energy operator are used, is more 
useful for calculations.  Therefore, in papers8, 9 a 
combination of these two methods was used for 
calculations of the vibrational–rotational energy 
levels of H2O and H2S molecules.  Finally, the DND 
method assumes in the direct numerical 
diagonalization of the matrix of the vibrational–
rotational Hamiltonian in the basis of the harmonic 
oscillators and rigid symmetric top eigenfunctions.  
This method uses the power series expansions over 
normal coordinates of the potential function and the 
inverse inertia tensor, which appears in the 
expressions for the kinetic energy, and dipole 
moment function.  This method was successfully used 
by Wattson and Rothman10 for the global treatment 
of line centers as well line intensities of CO2 
molecule.  

In the method, which was used by Chedin11 and 
Chedin–Teffo12 for the global treatment of energy 
levels of CO2 molecule and Teffo–Chedin13 for the 
global treatment of energy levels of N2O molecule, 
the vibrational–rotational Hamiltonian of the 
molecule was preliminarily subjected to the contact 
transformations.  Transformed Hamiltonian has the 
block–diagonal form, that allows one to easily find 
the eigenvalues, by performing the diagonalization of 
each block separately.  To simplify the calculations 
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Chedin11 has developed special computer codes for 
constructing an intermediate effective Hamiltonian.  
These computer codes enable one to establish 
analytical relations between the parameters of the 
effective Hamiltonian and the molecular constants, 
which characterize the geometry and the force field 
of the molecule.  

All the above–mentioned methods require 
significant computer resources both in operative 
memory, operative rate.  The approach, based on the 
determination of the molecular potential function, is 
intended for simultaneous description of all isotopic 
modifications of a molecule.  On the one hand, it is 
its advantage as compared to the effective operator 
method, since in this case it is possible to calculate 
the spectra of one isotopic modification of the 
molecule using the experimental information about 
other isotopic modifications.  On the other hand, 
such an approach limits the calculation accuracy of 

the line centers by the value λ = 2 B
$
/ω$, because of 

the neglect of the adiabatic corrections and 

nonadiabatic effect.  Here B
$
 and ω$ are the average 

values of the rotational constants and the harmonic 
frequencies of the molecule.  

In the second approach, which is used in this 
paper, one proceeds directly from the effective 
Hamiltonian, which globally describes all vibrational–
rotational energy levels of the ground electronic state 
and takes into account all resonance interactions in an 
explicit form. Such an effective Hamiltonian as a 
power series over the elementary vibrational and 
rotational operators can be constructed a priori by the 
methods of the group theory without very complicated 
analytical calculations within any method of the 
perturbation theory.  The effective Hamiltonian 
parameters and parameters of the corresponding 
effective dipole moment operator are not already the 
expansion coefficients of the potential function and 
dipole moment function.  The experimental data are 
directly fitted to these parameters.  The form of the 
operator expansion for the effective Hamiltonian and 
for the effective dipole moment operator depends on 
the zero–order approximation used.  In this paper the 
operator of the harmonic oscillators energy is used as 
the zero–order approximation.  It results in a power 
series for the effective Hamiltonian and the effective 
dipole moment operator.  The requirement to the 
effective Hamiltonian to be block–diagonal relative to 
polyads of the interacting vibrational states, as we have 
already mentioned, considerably simplifies the 
calculations.  This circumstance enabled us to 
implement the discussed approach for the CO2 and 

N2O molecules on a personal computer with the 
Pentium processor.  As known, the adiabatic and 
nonadiabatic corrections have the same functional 
dependence on the vibrational and rotational operators, 
as that of the principal contributions to the 
vibrational–rotational Hamiltonian.  Hence, the 
corrections can be taken into account by the effective 
Hamiltonian parameters. Therefore, the fitting of the 
effective Hamiltonian parameters gives much better 
agreement between the experimental and calculated 
values, than the fitting of the experimental data on 
various isotopic modifications to the parameters of a 
molecular force field. 

 

2. LINE CENTERS 

 
The CO2 molecule 

 
The following approximate relations between the 

frequencies of normal vibrations of a CO2 molecule are 
valid: 
 

ω1 ≈ 2ω2, ω3 ≈ 3ω2  (1) 
 

Owing to these relations the vibrational energy levels 
make up polyads, which can be numbered using 
the parameter 
 

 P = 2v1 + v2 + 3v3, (2) 
 

where v1, v2, and v3 are the vibrational quantum 
numbers. 

The effective Hamiltonian taken in the form 
involving the fourth order terms in Amat–Nielsen 
ordering scheme, which describes globally all the 
vibrational–rotational energy levels in the ground 
electronic state and takes into account, in an explicit 
form, the resonance interactions has been proposed by 
Chedin11 and used by Chedin11 and Chedin and 
Teffo12 as an intermediate operator for fitting the 
experimental values of the spectroscopic constants 
Gv

, B
v
, and D

v
 to the anharmonic force field of the 

molecule.  In our paper, Ref. 14, we added to this 
Hamiltonian all terms, allowed by the symmetry, up 
to the fourth order.  This Hamiltonian has been 
reduced with the help of the unitary transformations. 

The effective Hamiltonian can be presented by 
its matrix elements in the basis of eigenfunctions of 
harmonic oscillators and a rigid symmetric top:  

 

⏐v1 v2 �2 v3 J > =⏐v1 v2 �2 v3 >⏐JK = �2 >. (3) 
 

In the expression (3) the Hougen24 condition K = �2 

is used. 
 

The diagonal matrix elements are 

< v1 v2 �2 v3 J ⏐H ef⏐v1 v2 �2 v3 J > = ∑
i

 ωi ⎝
⎛

⎠
⎞

vi + 
 gi

2  +∑
ij

 xij ⎝
⎛

⎠
⎞

vi + 
 gi

2  ⎝
⎛

⎠
⎞

vj + 
 gj

2  + 

+ x
��

 �22 +∑
ijk

 yijk ⎝
⎛

⎠
⎞

vi + 
 gi

2  ⎝
⎛

⎠
⎞

vj + 
 gj

2  ⎝
⎛

⎠
⎞

vk + 
 gk

2  + ∑
i

 yi��

 ⎝
⎛

⎠
⎞

vi + 
 gi

2  �22 + 
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⎩⎪
⎨
⎪⎧ 

 
Be $ ∑

i

 αi ⎝
⎛

⎠
⎞

vi + 
 gi

2  + ∑
ij

 γij ⎝
⎛

⎠
⎞

vi + 
 gi

2  ⎝
⎛

⎠
⎞

vj + 
 gj

2  + γ
��

 �22
⎭⎪
⎬
⎪⎫ 

 
[J (J + 1) $ �22] $  

 

$ 

⎩
⎨
⎧

⎭
⎬
⎫

De + ∑
i

 βi ⎝
⎛

⎠
⎞

vi + 
 gi

2  [J (J + 1) $ �22]
2 + He [J (J + 1) $ �22]

3 . (4) 

 

The matrix element of the � –type doubling is 
 

< v1 v2 �2 v3 J ⏐Hef⏐v1 v2 �2 ± 2 v3 J > = (v2 ± �2 + 2) (v2 K �2) × 
 

× [J (J + 1) $ �2 (�2 ± 1)] [J (J + 1) $ (�2 ± 1) (�2 ± 2)]  

⎩
⎨
⎧

⎭
⎬
⎫

Le + ∑
i

 Li ⎝
⎛

⎠
⎞

vi + 
 gi

2  + LJ J (J + 1) + LK(�2 ± 1)2  .

 (5) 
 

The matrix elements of the Fermi–interaction operators are 
 

< v1 v2 �2 v3 J⏐Hef⏐v1 $ 1v2 + 2 �2 v3 J > = 
 

= v1 (v2 + �2 + 2) (v2 $ �2 + 2)  

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫Fe + ∑

i

 Fi ⎝
⎛

⎠
⎞vi + 

Δvi + gi

2  + FJ [J (J + 1) $ �22] , (6) 

 

< v1 v2 �2 v3 J⏐H ef⏐v1$2 v2 + 4 �2 v3 J >= FIV v1 (v1 $ 1) (v2 + �2 + 2) (v2 + �2 + 4) (v2 $ �2 + 2) (v2 $ �2 + 4).

 (7) 
 

The Fermi  + � –type interaction matrix element is 

 

< v1 v2 �2 v3 J ⏐H ef⏐v1 $ 1 v2 + 2 �2 ± 2 v3 J > = 
 

= v1 (v2 ± �2 + 2)  (v2 ± �2 + 4) [J (J + 1) $ �2 (�2 ± 1)] [J (J + 1) $ (�2 ± 1) (�2 ± 2)]  {F L±F L�  (�2 ± 1)}. (8) 

 

The matrix elements of the resonance Coriolis interaction operators are 
 

< v1 v2 �2 v3 J ⏐Hef⏐v1 $ 1 v2 $ 1 �2 ± 1 v3 + 1 J > = v1 (v2 K �2) (v3 + 1) [J (J + 1) $�2 (�2 ± 1)] × 
 

×
⎩⎪
⎨
⎪⎧

 

 
Ce ± C

�
 ⎝
⎛

⎠
⎞�2 ± 

1
2  + ∑

i

 Ci ⎝
⎛

⎠
⎞vi + 

Δvi + gi

2  + CJ J (J + 1) + CK ⎣
⎡

⎦
⎤�2 (�2 ± 1) + 

1
2 ⎭⎪

⎬
⎪⎫

 

 
 ; (9) 

 

< v1 v2 �2 v3 J ⏐H ef⏐v1 v2 $ 3 �2 ± 1 v3 + 1 J > = 
 

= $ (v3 + 1) (v2
2 $ �22)  (v2 K �2 $ 2) [J (J + 1) $ �2 (�2 ± 1)]  

⎩
⎨
⎧

⎭
⎬
⎫

Ce1 ± C�1 ⎝
⎛

⎠
⎞�2 ± 

1
2 ⎭⎪

⎬
⎪⎫

 

 
 ; (10) 

 

< v1 v2 �2 v3 J ⏐H ef⏐v1 + 2 v2 $ 1 �2 ± 1 v3 $ 1 J > = 
 

= $ v3 (v1 + 1)  (v1 + 2)(v2 K �2) [J (J + 1) $ �2 (�2 ± 1)]  
⎩
⎨
⎧

⎭
⎬
⎫

C
e2 ± C

�2 ⎝
⎛

⎠
⎞�2 ± 

1
2 ⎭⎪

⎬
⎪⎫

 

 
 . (11) 

 
The choice of the phases of rotational wave 

functions is made so that the matrix elements of the 
operator Jx in the molecule–fixed frame are real and 
positive, and the choice of phases of vibrational wave 
functions is made so, that eigenfunctions of the 

double degenerate oscillator under reflection in the 
yz plane of a molecule–fixed frame are transformed 
as follows:  
 

σyz⏐v2 �2 > =⏐v2 $ �2 >. (12) 
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Here z is the symmetry axis of the molecule, 
while the degenerate normal coordinates q2a and q2b 
are oriented along x– and y–axes, respectively.  The 
choice of the wave function phases is considered in 
our paper, Ref. 25 in a more detail. 

In our paper, Ref. 14, it is shown that the 
effective Hamiltonian, presented by the matrix 
elements, Eq. (4)–(11), is ambiguous.  This 
ambiguity is connected with the existence of the 
unitary transformations 
 

H
∼

 

ef = eiS H 

ef e$iS, (13) 
 

which do not change the form of the Hamiltonian 
and its eigenvalues, but contribute essentially to its 
parameters.  The ambiguity revealed leads to the 
correlations between the effective Hamiltonian 
parameters, that makes their determination by the 
fitting of the experimental data by the least–square 
method rather difficult.  In this paper14 the 
ambiguity of the effective Hamiltonian is removed by 
reducing this Hamiltonian, with the help of the 
unitary transformations, Eq. (13).  The reduced 
effective Hamiltonian is not ambiguous.  One of the 
reduced forms of the effective Hamiltonian can be 
obtained, if one assumes that 
 

x��, y1��, y2��, y3��, γ��, F
L
� , C�, C�1, C�2 = 0 (14) 

 

and imposes the following limitations, Ref. 14, on LK 
and CK parameters: 
 

LK = $ LJ , CK = $ CJ. (15) 
 

TABLE I .  Weighted standard deviations for the 
spectroscopic parameters of CO2–molecule. 

 

Number of a 
Hamiltonian 

Weighted standard deviations 

parameters Gv Bv Dv 

52 0.690 0.483 1.077 
 

In Ref. 14 the parameters of the above derived 
reduced effective Hamiltonian have been found by 
means of the least–square fitting of the experimental 

spectroscopic constants of a 
12
Ñ

16
Î2 molecule, 

determining the vibrational–rotational energy levels 
by the expression 
 

EVJ = Gv + Bv J (J + 1) $ Dv [J (J + 1)]2. (16) 
 

Seventy three vibrational constants Gv, 119 
rotational constants Bv, and 111 centrifugal 
distortion constants Dv from Ref. 26 have been used 
in the fitting.  The results of the fitting are given in 
Table I. 

The most impressive results27 were achieved in the 
direct fitting of the experimental wave numbers of the 

vibrational–rotational transitions to the parameters of 
the effective Hamiltonian.  The file of the experimental 
data was kindly given us by Rothman.  This file 
contains more than 15000 lines, taken from Refs. 28 –
 48.  It should be noted that we used the experimental 
information about transitions between the vibrational–
rotational energy levels, with the wave numbers up to 
24000 cm–1.  The calculations were performed with the 
help of GIP computer codes, Ref. 49, specially adapted 
for the CO2 molecule.  The effective Hamiltonian was 
extended up to the sixth order to achieve a higher 
fitting quality.  But, in the fitting we have neglected 
some fifth and sixth order parameters.  It has been 
established during the fittings that the best 
improvement is reached by the sixth order diagonal 
parameters zijlk, which are determined by the expression 

 

∑
ijlk

 zijlk ⎝
⎛

⎠
⎞

vi + 
 gi

2  ⎝
⎛

⎠
⎞

vj + 
 gj

2  ⎝
⎛

⎠
⎞

vl + 
 gl

2  ⎝
⎛

⎠
⎞

vk + 
 gk

2  , (17) 

 

and the fifth order parameters, describing the 
quadratic dependence of the Fermi interaction 
constant on the vibrational quantum numbers and the 
quadratic dependence of this constant on the 
quantum number of angular momentum J, i.e.,:  
 

F11v
2
1 + F12v1(v2 + 2) + F13v1⎝

⎛
⎠
⎞v3 + 

1
2  + F22(v2 + 2)2+ 

+F23(v2 + 2)⎝
⎛

⎠
⎞v3 + 

1
2  + F33⎝

⎛
⎠
⎞v3 + 

1
2 

2

+ 
 

+ FJJ[J (J+1) $ �2
2]

2.  (18) 
 

The results of fitting are given in Table II. 
 

TABLE II. The results of fitting of the wave 
number of CO2 molecule 

 

Number of 
Hamiltinian 
parameters

Number of 
lines 

Number of 
bands 

rms deviation, 
cm–1 

130 15038 166 0.00105 
 

In order to demonstrate the extrapolation 
abilities of the obtained parameters of the effective 
Hamiltonian we have performed calculations and 
compared with the experiment from Ref. 50, of the 
line centers of the band 20033 ← 00001, lying in 
the region of 9400 cm–1, i.e., on the border 
between the visible and IR regions.  It should be 
noted, that the experimental data used for fitting 
of the effective Hamiltonian parameters, belong to 
the microwave, far and middle IR regions. 
Predicted and experimental values of the line 
centers of the band 20033 ← 00001 are given in 
Table III.  The authors of Ref. 50 give the 
experimental accuracy for the line centers to be 
about 0.05 cm–1. 
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TABLE III. Experimental and predicted values of 
the wave numbers, cm–1, for the band 
20033 ← 00001 of the CO2 molecule. 
 

Line 
Experiment, 

Ref. 50 Calculation 
Experiment 

minus 
calculation 

P2 9387.39 9387.41 –0.02 
R2 9391.18 9391.24 –0.06 
P4 9385.76 9385.77 –0.01 
R4 9392.68 9392.66   0.02 
P6 9384.08 9384.07   0.01 
R6 9393.99 9394.01 –0.02 
P8 9382.29 9382.31 –0.02 
R8 9395.28 9395.31 –0.03 
P10 9380.47 9380.48 –0.01 
R10 9396.49 9396.54 –0.05 
P12 9378.60 9378.59   0.01 
R12 9397.67 9397.71 –0.04 
P14 9376.61 9376.64 –0.03 
R14 9398.79 9398.81 –0.02 
P16 9374.62 9374.62   0.00 
R16 9399.80 9399.85 –0.05 
P18 9372.52 9372.54 –0.02 
R18 9400.83 9400.83 0.00 
P20 9370.40 9370.40 0.00 
R20 9401.69 9401.74 –0.05 
P22 9368.18 9368.19 –0.01 
R22 9402.56 9402.59 –0.03 
P24 9365.93 9365.92 0.01 
R24 9403.36 9403.37 –0.01 
P26 9363.61 9363.59  0.02 
R26 9404.07 9404.09 –0.02 
P28 9361.14 9361.19 –0.05 
R28 9404.75 9404.75 0.00 
P30 9358.73 9358.73 0.00 
R30 9405.31 9405.34 –0.03 
P32 9356.22 9356.21 0.01 
R32 9405.85 9405.87 –0.02 
P34 9353.65 9353.62 0.03 
R34 9406.29 9406.33 –0.04 
P36 9351.04 9350.96 0.08 
R36 9406.69 9406.72 –0.03 
P38 9348.31 9348.24 0.07 
R38 9407.04 9407.05 –0.01 
P40 9345.51 9345.46 0.05 
R40 9407.33 9407.31 0.02 
P42 9342.61 9342.61 0.00 
P44 9339.74 9339.69 0.05 
P46 9336.68 9336.71 –0.03 

As follows from Table III, all predicted values of 
the line centers coincide within the experimental 
errors with the experimental values.  

The comparison of the prediction abilities of our 
effective Hamiltonian model and DND–method10 is 
given in Table IV.  The comparison was performed 
with the experimental values of line centers of the 
band 05511 → 05501, recorded recently by Bailly and 
others.51  As follows from this table, the accuracy of 
our predictions is one order better than the accuracy 
of the predictions by the DND–method.  
 

TABLE IV.  Comparison of predictive abilities of 
our approach and DND method (HITRAN 92). 
The centers of lines, cm–1, for the band 
05511 → 05501 of the 12C16O2 molecule. 
 

Line
Our 

calculation

Calculatio
n minus 

experiment 
DND 

DND 
minus 

experiment

P10 2278.6423 0.001 2278.66505 0.024 
P20 2269.9238 0.002 2269.94472 0.023 
P30 2260.6293 0.002 2260.64744 0.020 
P40 2250.7640 0.003 2250.77907 0.018 
P50 2240.3341 0.003 2240.34650 0.016 
P59 2230.4704 0.004   
R10 2295.0569 0.001 2295.07937 0.023 
R20 2301.9642 0.001 2301.98457 0.022 
R30 2308.2814 0.001 2308.29894 0.019 
R40 2314.0071 0.002 2314.02156 0.017 
R50 2319.1404 0.002 2319.15247 0.014 
R60 2323.6820 0.004   
R69 2327.2650 0.006   

 

In Table V is given the comparison of our 
predicted values with the experimental values of 
Bailly and coauthors, Ref. 35, for the line centers 
of the “hot” bands 000(10)1 → 00091, 
000(11)1 → 000(10)1, and 000(12)1 → 000(11)1 of 
12

C
16

O2 molecule.  As it follows from this table the 
prediction is quite satisfactory, if takes into 
account the fact that these bands are formed by the 
transitions between the vibrational–rotational 
energy levels lying higher then 20000 cm–1.  It is 
necessary to emphasize that the vibrational states 
00081 and 00091 were the most high–excited states 
involved into the fitting of the effective 
Hamiltonian parameters.  The last column of the 
Table V also shows the energy values of the low 
states. 
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TABLE V. The comparison of the predicted and experimental line centers of “hot” bands 000(10)1 → 00091, 
000(11)1 → 000(10)1 and 000(12)1 → 000(11)1 of the 12C16O2 molecule. 

 

Transition 

 

Calculation, 
 cm–1 

Calculation 
minus 

experiment,
cm–1, 

Ref. 35 

Elow., cm
–1 

1  2 3 4 
000(10)1 → 00091 P7 2120.9279 0.0026 22798.9541
000(10)1 → 00091 P9 2119.3862 0.0026 22811.2826
000(10)1 → 00091 P11 2117.8201 0.0025 22826.5116
000(10)1 → 00091 P13 2116.2302 0.0029 22844.6407
000(10)1 → 00091 P15 2114.6159 0.0030 22865.6697 
000(10)1 → 00091 P19 2111.3147 0.0032 22916.4256 
000(10)1 → 00091 P21 2109.6271 0.0026 22946.1517 
000(10)1 → 00091 P23 2107.9161 0.0027 22978.7758 
000(10)1 → 00091 P27 2104.4220 0.0029 23052.7160 
000(10)1 → 00091 P31 2100.8313 0.0027 23138.2410 
000(10)1 → 00091 P33 2098.9999 0.0025 23185.3460 
000(10)1 → 00091 P35 2097.1444 0.0022 23235.3450 
000(10)1 → 00091 P39 2093.3618 0.0018 23344.0210 
000(10)1 → 00091 P41 2091.4351 0.0020 23402.6963 
000(10)1 → 00091 P45 2087.5101 0.0024 23528.7162 
000(10)1 → 00091 P55 2077.2801 0.0019 23894.2840 
000(10)1 → 00091 R3 2128.9727 0.0028 22782.9990 
000(10)1 → 00091 R5 2130.3560 0.0028 22789.5261 
000(10)1 → 00091 R9 2133.0488 0.0023 22811.2826 
000(10)1 → 00091 R11 2134.3592 0.0028 22826.5116 
000(10)1 → 00091 R13 2135.6444 0.0025 22844.6407 
000(10)1 → 00091 R17 2138.1415 0.0026 22889.5981 
000(10)1 → 00091 R19 2139.3529 0.0024 22916.4256 
000(10)1 → 00091 R21 2140.5399 0.0023 22946.1517 
000(10)1 → 00091 R23 2141.7025 0.0026 22978.7758 
000(10)1 → 00091 R25 2142.8400 0.0024 23014.2975 
000(10)1 → 00091 R33 2147.1437 0.0027 23185.3460 
000(10)1 → 00091 R37 2149.1462 0.0021 23288.2369 
000(10)1 → 00091 R39 2150.1105 0.0022 23344.0210 
000(10)1 → 00091 R41 2151.0496 0.0019 23402.6963 
000(10)1 → 00091 R53 2156.1628 0.0025 23815.4019 
000(10)1 → 00091 R55 2156.9267 0.0018 23894.2840 
000(10)1 → 00091 R59 2158.3803 0.0014 24060.6917 

000(11)1 → 000(10)1 P6 2097.2923 0.0112 24919.8794 
000(11)1 → 000(10)1 P8 2095.7743 0.0105 24930.6662 
000(11)1 → 000(10)1 P10 2094.2333 0.0110 24944.3292 
000(11)1 → 000(10)1 P14 2091.0770 0.0104 24980.2826 
000(11)1 → 000(10)1 P18 2087.8252 0.0108 25027.7370 
000(11)1 → 000(10)1 P20 2086.1629 0.0109 25055.7762 
000(11)1 → 000(10)1 P22 2084.4759 0.0103 25086.6893 
000(11)1 → 000(10)1 P30 2077.4901 0.0106 25239.0696 
000(11)1 → 000(10)1 P32 2075.6831 0.0100 25284.3434 
000(11)1 → 000(10)1 P34 2073.8529 0.0102 25332.4871 
000(11)1 → 000(10)1 P36 2071.9983 0.0099 25383.4999 
000(11)1 → 000(10)1 P44 2064.3429 0.0104 25616.2239 
000(11)1 → 000(10)1 P46 2062.3693 0.0104 25681.5679 
000(11)1 → 000(10)1 P50 2058.3517 0.0109 25820.8439 
000(11)1 → 000(10)1 P56 2052.1471 0.0113 26051.2089 
000(11)1 → 000(10)1 R2 2103.8188 0.0107 24906.9348 
000(11)1 → 000(10)1 R4 2105.2020 0.0105 24911.9689 
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TABLE V (continued) 
1 2 3 4 5 

000(11)1 ← 000(10)1 R8 2107.8960 0.0107 24930.6662 
000(11)1 → 000(10)1 R10 2109.2061 0.0106 24944.3292 
000(11)1 → 000(10)1 R12 2110.4919 0.0107 24960.8681 
000(11)1 → 000(10)1 R14 2111.7532 0.0108 24980.2826 
000(11)1 → 000(10)1 R18 2114.2015 0.0103 25027.7370 
000(11)1 → 000(10)1 R20 2115.3893 0.0106 25055.7762 
000(11)1 → 000(10)1 R24 2117.6902 0.0102 25120.4758 
000(11)1 → 000(10)1 R26 2118.8036 0.0100 25157.1351 
000(11)1 → 000(10)1 R30 2120.9570 0.0102 25239.0696 
000(11)1 → 000(10)1 R32 2121.9967 0.0103 25284.3434 
000(11)1 → 000(10)1 R36 2124.0017 0.0105 25383.4999 
000(11)1 → 000(10)1 R40 2125.9076 0.0108 25494.1294 
000(12)1 → 000(11)1 P3 2075.2073 0.0255 27010.7429 
000(12)1 → 000(11)1 P7 2072.2467 0.0264 27026.4300 
000(12)1 → 000(11)1 P9 2070.7291 0.0259 27038.5515 
000(12)1 → 000(11)1 P11 2069.1868 0.0249 27053.5247 
000(12)1 → 000(11)1 P15 2066.0328 0.0258 27092.0250 
000(12)1 → 000(11)1 P19 2062.7811 0.0255 27141.9282 
000(12)1 → 000(11)1 P25 2057.7235 0.0254 27238.1557 
000(12)1 → 000(11)1 P31 2052.4507 0.0260 27360.0165 
000(12)1 → 000(11)1 R9 2084.1606 0.0254 27038.5515 
000(12)1 → 000(11)1 R11 2085.4462 0.0251 27053.5247 
000(12)1 → 000(11)1 R13 2086.7079 0.0252 27071.3493 
000(12)1 → 000(11)1 R19 2090.3470 0.0266 27141.9282 
000(12)1 → 000(11)1 R25 2093.7631 0.0259 27238.1557 
000(12)1 → 000(11)1 R29 2095.9179 0.0259 27316.5492 
000(12)1 → 000(11)1 R31 2096.9583 0.0259 27360.0165 
000(12)1 → 000(11)1 R33 2097.9742 0.0262 27406.3298 

 

The N2O molecule 
 

The effective Hamiltonian for the global treatment 
of the vibrational–rotational states, belonging to the 
ground electronic state of this molecule, was proposed 
by Pliva,52 who found out its ambiguity.  He has 
removed this ambiguity in the first orders, by imposing 
restrictions on the effective Hamiltonian parameters, 
following the explicit expressions for these parameters 
in terms of molecular constants.  Later this 
Hamiltonian was used as an intermediate operator by 
Teffo and Chedin13 for fitting the N2O molecule force 
field, based on the experimental values of the 
spectroscopic constants Gv, Bv and Dv.  In our paper, 
Ref. 15, we gave all the symmetry allowed effective 
Hamiltonian terms up to the fourth order 

inclusive.  These terms that are the result of the 
approximate relation between harmonic frequencies 

 

 ω3 ≈ 2ω1 ≈ 4ω2. (19) 
 

 

The reduction of the obtained effective Hamiltonian 
by means of the unitary transformations was 
performed there. 

The effective Hamiltonian discussed can be 
presented by its matrix elements in the basis of the 
products of harmonic oscillator eigenfunctions and 
the rigid symmetric top eigenfunctions.  The diagonal 
matrix element has the same form, Eq. (4), as in the 
case of the effective Hamiltonian for the CO2 
molecule. The matrix elements of the interaction 
operators are given below. 

 

 

The matrix elements of the Fermi interaction operators are 

<v1 v2 �2 v3 J⏐H ef⏐v1 $ 1 v2 + 2�2 v3 J> = v1 (v2 + �2 + 2) (v2 $ �2 + 2) × 
 

 × 
⎩
⎨
⎧

⎭
⎬
⎫

F(2)
e  + F(2)

1  v1 + F(2)
2  (v2 + 2) + F(2)

3  ⎝
⎛

⎠
⎞v3 + 

1
2  + F(2)

J  [J (J + 1) $ �22] , (20) 

<v1 v2 �2 v3 J⏐H ef⏐v1 $ 2 v2 �2 v3 + 1J> = (v1 $ 1) v1 (v3 + 1) × 

× 
⎩
⎨
⎧

⎭
⎬
⎫

F(3)
e  + F(3)

1  ⎝
⎛

⎠
⎞v1 $ 

1
2  + F(3)

2 (v2 + 1) +F(3)
3  (v3 + 1) + F(3)

J  [J (J + 1) $ �22] . (21) 
 

The matrix element of the Fermi + � – type interaction is 

<v1 v2 �2 v3 J⏐H ef⏐v1 $ 1 v2 + 2 �2 ± 2 v3 J> = v1 (v2 ± �2 + 2) × 
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× (v2 ± �2 + 4) [J (J + 1) $ �2(�2 ± 1)] [J (J + 1) $ (�2 ± 1) (�2 ± 2)]  {F(8)
L  ± F(8)

L�

 (�2 ± 1)}. (22) 
 

The matrix element of the second order anharmonic interaction is 
 

<v1 v2 �2 v3 J⏐H ef⏐v1 $ 1 v2 $ 2 �2 v3 + 1 J> = 
 

= v1 (v2 $ �2) (v2 + �2))  (v3 + 1) {F(4)
e  + F(4)

1  v1 + F(4)
2  v2 + F(4)

3  (v3 + 1) + F(4)
J  [J (J + 1) $ �22]}. (23) 

 

The matrix element of the anharmonic + � – type interaction operator is 
 

<v1 v2 �2 v3 J⏐H ef⏐v1 $ 1 v2 $ 2 �2 ± 2 v3 + 1 J> = 
 

= F(14)
L  v1 (v2 K �2)  (v2 K �2 $ 2) (v3 + 1) [J (J + 1) $ �2 (�2 ± 1)  [J (J + 1) $ (�2 ± 1) (�2 ± 2)]. (24) 

 

The matrix element of the third order anharmonic interaction operator is 
 

<v1 v2 �2 v3 J⏐H ef⏐v1 v2 $ 4 �2 v3 + 1 J> = F(10)
e (v2 $ �2) (v2 + �2) (v2 $ �2 $ 2) (v2 + �2 $ 2) (v3 + 1). (25) 

 

The matrix elements of the fourth order anharmonic interaction operators are 
 

<v1 v2 �2 v3 J⏐H ef⏐v1 $ 2 v2 + 4 �2 v3 J> = F(11)
e  (v1 $ 1) v1 (v2 $ �2 + 2)

  (v2 + �2 + 2) (v2 $ �2 + 4) (v2 + �2 + 4), (26) 
 

<v1 v2 �2 v3 J⏐H ef⏐v1 $ 4 v2 �2 v3 + 2 J> = F(12)
e  (v1 $ 3) (v1 $ 2) (v1 $ 1) v1 (v3 + 1) (v3 + 2) , (27) 

 

<v1 v2 �2 v3 J⏐H ef⏐v1 $ 3 v2 + 2 �2 v3 + 1 J> = F(13)
e (v1 $ 2) (v1 $ 1) v1 (v2 $ �2 + 2) (v2 + �2 + 2) (v3 + 1).(28) 

 

The choice of the molecule–fixed frame, the 
phase of the two–dimensional harmonic vibration 
and of the phases of the wave functions is made as in 
the previous case with the CO2 molecule. 

Figure 1 shows the form of the effective 

Hamiltonian matrix.  This matrix is a block–
diagonal one.  The blocks correspond to the concrete 
polyads, which can be numbered with the index  

 

P = 2v1 + v2 + 4v3 . (29) 
 

 

 

FIG. 1. The matrix of the effective rotational–vibrational Hamiltonian of the N2O molecule and the series of 
bands. 
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In our paper15 some variants of the reduced 
effective Hamiltonian were proposed.  It was shown, 
that partially reduced effective Hamiltonian with 
fifty three parameters gives the best result.  This 
operator is obtained from the effective Hamiltonian, 
given by the expressions (4) and (20)–(28), by 
elimination, using the unitary transformations, the 
following parameters:  

x��, y3��, γ��, F
(3)
e , F(10)

e , F(11)
e , F(12)

e , F(4)
1 , F(4)

2 , F(4)
J , 

F(8)
L�

.  Besides the limitation LK = – LJ is imposed 

besides on LK and LJ parameters.  The subsequent 
fitting of the experimental data has shown, that the 

parameters He and F(14)
L  can be neglected in the 

considered approximation.  
 

TABLE VI. The weighted standard deviations and 
rms deviations of the spectroscopic constants of 
14

N2
16

O
* molecule.  

 

Number of 
the adjusted 

Weighted standard deviations and 
rms deviations (in parentheses)* 

parameters Gv Bv Dv 

53 5.10 
(0.012) 

6.64 (1.21) 14.00 (3.71)

 

*rms, cm–1, for parameters Gv, 10–5 cm–1 for 
parameters Bv and 10–9 cm–1 for parameters Dv. 
 

TABLE VII.  Predicted and experimental55 values 
of the spectroscopy parameters Gv and Bv of the 
14

N2
16

O molecule. 
 

State* G
(obs)

v  G
(obs)

v  
minus 

G
(calc)

v  

B
(obs)

v  B
(obs)

v  
minus  

B
(calc)

v  

0004 8714.117 –0.061 0.40518 0.00000

1203 8877.028 0.337 0.40800 –0.00001

2003 8976.497 –0.008 0.40512 –0.00023

4002 a 9219.035 0.323 0.40747 –0.00042

4002 b 9294.966 –0.206 0.40618 –0.00066

6001 9606.305 –0.632 0.40724 –0.00081

1004 9888.579 0.210 0.40333 $0.00008

3003 a 10079.560 0.624 0.40616 $0.00013

3003 b 10163.614 $0.016 0.40369 $0.0004

5002 10429.117 0.366 0.40545 $0.00056

0005 10815.274 0.769 0.40424 $0.00052

0404 10820.143 $0.282 0.40473 0.00061 

0205 11844.970 1.130 0.40378 $0.00004

1005 11964.252 0.573 0.40009 0.00018 

0006 12891.153 0.038 0.39838 $0.00044

1006 14009.686 1.709 0.39657 0.00005
0007 14934.267 0.116 0.39478 0.00013 

 

*In the cases, when the indices (v1, v2, �2, v3) do 

not allow to identify a level, the designations “a” and 

“b” for these levels are used. 

The fitting of the effective Hamiltonian 
parameters was carried out15 for the experimental 
data, obtained by Toth,53 with addition of 
spectroscopic constants for high–excited vibrational 
states, published by Amiot and Guelachvili.54  This 
set of experimental data contains 114 vibrational 
constants Gv, 112 rotational constants Bv, and 100 
centrifugal distortion constants Dv.  The weighted 
standard deviations and rms of fitting for the 
spectroscopic constants are given in Table VI. 

A good extrapolation properties of our reduced 
effective Hamiltonian were later confirmed in the 
experimental paper,55 where the absorption spectrum 
of the N2O molecule in the range 8700–15000 cm–1 
was investigated using the Fourier and intracavity 
laser spectroscopy methods.  The comparison of the 
predicted values of the spectroscopic constants Gv 
and Bv with the experimental values is given in 
Table VII.  It should be noted, that fitting of the 
effective Hamiltonian parameters involved the 
vibrational states, lying below 8000 cm–1.  

 

3. THE LINE INTENSITY 

 

The intensity of the incident radiation 
absorption at the frequency ν, that induces the 
molecular transition from the state a to the state b, is 
given by well known formula 
 

Sb ← a(T) = 
8π3

3hc
 n 

273.15
T

 C νb←a 
exp ($ hc Ea/kT)

Q(T)
 × 

 
× [1 $ exp ($ hc νb←a/kT)] Wb ← a , (30) 
 
where Sb ← a(T) is the absorption line intensity,  
cm–2/atm, at temperature T, Ê; n is the Loschmidt 
number; Ñ is the isotopic abundance; νb←a is the 
frequency of the transition b ← a; Ea is the energy of 
the low state; k is the Boltzmann constant; h is the 
Plank constant; c is the speed of light; Q(T) is the 
partition function and Wb←a, i.e., the probability of 
the molecular transition from the state a to the state 
b is given by the expression 

 

Wb ← a = ∑
α=X,Y,Z 

      ∑
MM′

 ⏐< b M′⏐Mα⏐a M >⏐2, (31) 

 

where the summation is carried out over the magnetic 
quantum numbers M and M′ of the high and low 
states, and over the components of the dipole 
moment in the laboratory–fixed frame. 

The transition probability can be calculated 
using the eigenfunctions of the effective Hamiltonian: 

 

ψ 

ef
NJMε= ∑

v1v2�2v3

   JC
v1v2�2v3

Nε
 ⏐v1 v2⏐�2⏐v3 JMε >, (32) 

 

where JC
v1v2�2v3

Nε
 are the mixing coefficients.  But in 

the expression (31) the effective dipole moment 
operator has to be used instead of the dipole moment 
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operator.  The effective dipole moment operator is 
obtained from the dipole moment operator by the 
same contact transformations 
 

M 

ef
α  = eiSCT Mα e

$iSCT, (33) 
 

as the effective Hamiltonian from the vibrational–
rotational Hamiltonian 
 

Hef = eiSCT HVR e
$iSCT . (34) 

 

Thus: 
 

WN′J′ε′←NJε = ∑
α=X,Y,Z 

     ∑
MM′

 ⏐< ψ 

ef
N′J′M′ε′⏐M 

ef
α ⏐ψ 

ef
NJMε >⏐2.(35) 

 

After several algebraic transformations, the 
calculations of the matrix elements and summations 
performed in Eq. (35) the probability of the allowed 
transition between the stationary states of a linear 
triatomic molecule in the general form can be written 
as follows16,18: 

 

 

WN′J′ε′←NJε = (2 J + 1)   ∑
v1v2�2v3

      ∑
Δv1+Δv2+Δv3=ΔP

Δ�2

         JC
v1v2�2v3

Nε
   J

′

C
v1+Δv1v2+Δv2�2+Δ�2v3+Δv3

N′ε′
  × 

 

× M
⏐Δ�

2
⏐

ΔV f 

Δ�
2

ΔV(V, �2) (1 + δ
�2,0

 + δ
�′2,0

 $2 δ
�2,0

 δ
�′2,0

) (1Δ�2 J �2⏐(J + ΔJ) (�2 + Δ�2)) (1 + ∑
i

 i
ΔV
i  vi + F

ΔV
Δ�2

 (�2, J))⏐2.

 (36) 
 
 

Here f 

Δ�
2

ΔV(V, �2) are known functions of the 

vibrational quantum numbers, the explicit form of 
which for small values ΔV is given in Ref. 16, 
(Table I).  We use the vector designation V for a set 
of vibrational quantum numbers (v1, v2, v3).   
Similarly, ΔV designates the set (Δv1, Δv2, Δv3).  The 
Clebsch–Gordan coefficient, see expression (36), is 

connected with the Hönl–London coefficient L
Δ�

2

ΔJ  by 
the following expression: 

 

⏐(1 Δ�2 J �2⏐(J + ΔJ)(�2 + Δ�2))⏐2 = L
Δ�

2

ΔJ /(2 J + 1).

 (37) 
 

The function F
ΔV
Δ�2

(�2, J) for the parallel bands has the 

form 
 

F
ΔV
0 (�2, J) = b

ΔV
J  m + d

ΔV
J  [J (J + 1) + m $ �2

2], (38) 
 

where m = – J, 0, J + 1 for P–, Q– and R–
branches, respectively.  This function for Q–branches 
of the perpendicular bands can be written in the form 
 

F
ΔV
Δ�2

(�2, J) = $ 
1
2 b

ΔV
J  (2 �2 Δ�2 + 1) + 

 

+ d
ΔV
JQ ⎣

⎢
⎡

⎦
⎥
⎤

J (J + 1) $ �22 $ Δ�2 ⎝
⎜
⎛

⎠
⎟
⎞

�2 + 
Δ�2 
2  , (39) 

 

and for P– and R–branches in the form 
 

F
ΔV
Δ�2

(�2,J) = $ 
1
4 (d

ΔV
JQ $ d

ΔV
J ) $ 

 

$ 
1
2 (b

ΔV
J  + d

ΔV
JQ)(2 �2 Δ�2 + 1) $ d

ΔV
JQ �22 + 

 

+ b
ΔV
J m + d

ΔV
J m2 + (d

ΔV
JQ $ d

ΔV
J ) m ⎝

⎛
⎠
⎞�2 Δ�2 + 

1
2  . (40) 

 

The combination of the Kronecker symbols in the 
equation (36) is a consequence of the transition to 
Wang basis for the wave functions.  Parameters of 
the matrix elements of the effective dipole moment 

operator M
⏐Δ�

2
⏐

ΔV , i
ΔV
i  (i = 1, 2, 3), b

ΔV
J , d

ΔV
J  and d

ΔV
JQ 

 

simultaneously describe the line intensities of the 
cold and hot bands, belonging to the series of 
transitions with a given value ΔP (see Fig. 1).  In 
our approach these parameters are determined by the 
least squares fitting of the experimental line 
intensities.  They can also be calculated with the 
help of the contact transformation method, using the 
known force field and the dipole moment function of 
a molecule. 

 

The CO2 molecule  
 

The  equilibrium configuration of this molecule 
in the ground electronic state has D∞h symmetry, 

that leads to the following selection rules for the 
absorption and emission spectra:  

 

Δv3 + Δ�2 is odd, (41) 

 

e → f, f → e for ΔJ = 0,  

e → e, f → f for ΔJ = ± 1. (42) 
 

The transitions with Δ�2 = 0, ± 1 are called 

“allowed transitions” and those with Δ�2 = ± 2, ...  

are called “forbidden transitions”.  The latter are 
initiated by the vibrational–rotational interactions, 
and the corresponding lines have very low intensities.  
Because of the equality to zero of the oxygen atom 
spin the part of the vibrational–rotational energy 
levels of the CO2 molecule is forbidden by nuclear 
statistics.  The quantum numbers of the allowed 
energy levels satisfy the following equation: 
 

ε($ 1)
J+�2+v3 = 1. (43) 

 

To demonstrate the potentialities of our 
approach below we present the results of 
simultaneous fittings of the hot and cold bands, of 
two series of transitions with ΔP = 1 and ΔP = 3, 
Refs 56.  The bands of the series with ΔP = 1 lie in 
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two spectral regions.  In the region of the 
fundamental band ν2 about 15 μm and in the region 
of laser transition ν3 $ ν1 about 10 μm.  The  bands 
of the series with ΔP = 3, lie in the region of the 
fundamental band ν3 and combination band ν1 + ν2 at 
about 4 μm.  In the fitting of the line intensities by 
the least squares method the eigenfunctions of the 
effective Hamiltonian were used, the parameters of 
which have been determined by fitting the 
experimental values of the spectroscopic constants 
Gv, Bv and Dv (see Section 2). 

In the case of ΔP = 1 the series of transitions 
into the fitting, were involved the intensities of 743 
lines of 13 bands of the principal isotope of the CO2 
molecule, lying in the region of the fundamental 
band ν2: 01101 ← 00001, 10001 ← 01101, 
02201 ← 01101, 10002 ← 01101, 11101 ← 10002, 
11101 ← 02201, 11101 ← 10001, 03301 ← 02201, 
11102 ← 10002, 11102 ← 02201, 11102 ← 10001, 
20002 ← 11102, 12201 ← 03301, measured by Johns 
and Vander Auwera,57 and intensities of 161 lines of 
4 bands, lying in the region of band ν3 $ ν1: 
00011 ← 10001, 00011 ← 10002, 01111 ← 11102, 
01111 ← 11101, measured by Dana et al.58  In the 
former paper the measurement accuracy was reported 
to be 4%, and at the latter it was 6%. 

For the dimensionless weighted standard 
deviation of fitting: 

χ = ∑
i

 ⎝
⎛

⎠
⎞oi $ ci

δi
 

2

/(m $ n), (44) 

 

where oi and ci are the experimental (observed) and 
calculated intensity values; δi is an experimental 
error; m is the number of fitted intensities and n is 
the number of adjusted parameters, we managed to 
reach the value of 0.965.  This means, that the fitting 
has been performed with the experimental accuracy.  
The statistical analysis of the fitting is shown in 
Table VIII, and the set of fitted parameters of the 
matrix elements of the effective dipole moment 
operator is given in Table IX.  
 

TABLE VIII.  The statistical analysis of the fitting 
of line intensities of the bands, from the ΔP = 1 
series of 12Ñ16Î2 molecule. 

 

d = 
o. – c.

o.
 ×100 % 

Number of lines % lines 

0 ≤ d < 3 686 75.9 

3 ≤ d < 6 187 20.7 

6 ≤ d  31   3.4 
 

For the comparison Table IX also gives the 
calculated values for some effective dipole moment 
parameters.  These values have been obtained using 
formulas, derived by means of contact 
transformations in Refs. 16, 56, on the basis of force 
field and using dipole moment function by Wattson 
and Rothman.10 

The extrapolation abilities of our approach are 
demonstrated in Table X, where a comparison 
between the predicted and experimental59 values of 
the line intensities of the band 0001←11101 of 
12C16O2 molecule is given.  This band has not been 
involved into the fitting of the effective dipole 
moment matrix element parameters.  It is necessary 
to emphasize, that the predicted values of the 
intensities are within the experimental error. 
 

TABLE IX. The parameters of the matrix elements of 
the effective dipole moment operator (series ΔP = 1). 

 

Parameter
* 

Δv1 Δv2 Δv3 CT Simultaneous 
fitting 

M 0 1 0   $0.12744 (13)**

k2 0 1 0 $0.0064  $0.00331 (29) 

bJ 0 1 0 0.942  0.922 (25) 
dJ 0 1 0   0.00312 (84) 

  dJQ 0 1 0   0.00216 (98) 

M 1 $1 0 $0.0037  $0.003951 (58) 
bJ 1 $1 0 1.58  1.50 (88) 
M $1 0 1 0.0514  0.05075 (12) 
bJ $1 0 1   $1.010 (77) 
M 0 $2 1   $0.001326 (50) 
bJ 0 $2 1   $9.68 (135)
χ     0.965 

 
*The parameters MΔV are given in Debye; the 

parameters bJ, dJ and d
Q

J
 are dimensionless and are 

multiplied by 103. 
**The numbers in parentheses are one standard 

deviation in the units of the last digit. 
 

In the case of ΔP = 3 series of transitions 510 
lines belonging to 22 parallel bands,43,60–66 and 810 
lines belonging to 20 perpendicular bands42–44,67 have 
been fitted simultaneously.  We have found that in 
order to accurately describe the intensities of the 
perpendicular bands, lying in this region, without the 
use of matrix element of the effective dipole moment 
for Δν3 = 1 giving its contribution to the  line 
intensities of the perpendicular bands due to 
resonance Coriolis interaction, is practically 
impossible.  For the weighted standard deviation of 
the fitting we have obtained the value χ = 1.36.  
This means, that the fitting has been performed 
practically with the experimental accuracy. It should 
be noted that the accuracy of the line intensity 
measurements is not always clearly presented with 
the experimental results.  In the cases when we did 
not managed to find estimates of the accuracy of the 
line intensity measurements, this accuracy was 
assumed to be 10%.  But, as was shown in our 
analysis such accuracy is too optimistic. 

In Table XI is given a set of fitted parameters of 
the matrix elements of the effective dipole moment 
operator for ΔP = 3 series, and the values for some 
parameters, calculated by the method of contact 
transformations. 
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TABLE X. The comparison of the predicted and 
experimental line intensities, cm/molecule, for the 
band 20001 ← 11101 of 12Ñ16O2 molecule. 
 

Line Center S 
(predicted) 

 

S 
(observed)

Ref. 59 

Δ, %*

P19 705.5135 6.786D$24 7.228D$24 $6.1 

P21 703.9700 6.343D$24 7.179D$24   $12 

P25 700.8906 5.168D$24 5.677D$24 $8.9 

Q42 719.0339 2.282D$24 2.249D$24 1.5 

R5 724.9681 3.556D$24 3.592D$24 $1.0 

R7 726.5356 4.762D$24 4.873D$24 $2.2 

R9 728.1046 5.767D$24 5.664D$24 1.8 

R13 731.2475 7.058D$24 6.904D$24 2.2 

R17 734.3973 7.354D$24 7.381D$24 $0.4 

R19 735.9748 7.170D$24 6.907D$24 3.8 

R23 739.1358 6.305D$24 6.175D$24 2.1 

R25 740.7193 5.708D$24 5.629D$24 1.4 

R37 750.2731 2.039D$24 2.043D$24 $0.2 

 

*Δ = 
c. $ o.

o.  × 100 %. 

 
The approach used well reproduces all effects 

manifested themselves in the line intensities and 
connected with the intramolecular resonance 
interactions.  Figure 2 shows that our calculations 
reproduce a significant asymmetry of P– and R– 
branches of ν1 + ν2 band, connected with the 
resonance Coriolis interaction. 
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FIG. 2. Calculated (⎯) and experimental (- - - -) 
line intensities for the band 11101 ← 00001 of 
12C16O2 molecule. 
 

TABLE XI. Parameters of the matrix elements of 
the effective dipole moment operator for 12Ñ16O2 
molecule (Series ΔP = 3). 

 

Parameter
* 

Δv1 Δv2 Δv3 CT Simultaneous 
fitting 

M 0 0 1  $0.3219  (7)**
i1 0 0 1 $0.0181 $0.029 (2) 

i2 0 0 1 $0.0026 $0.0077 (12)
bJ 0 0 1 $0.150 $0.160 (40)
dJ 0 0 1  $0.0031 (10)
M $1 2 1  $0.00090 (3) 
M 1 1 0 0.001360.001474 (3) 
i1 1 1 0   0.0247 (53)
bJ 1 1 0 7.56  0.53 (13)
dJQ 1 1 0  $0.0056 (21)
dJ 1 1 0   0.0045 (30)
M 2 $1 0  $0.000393 (60)
i2 2 $1 0  $0.068 (12)
bJ 2 $1 0   4.94 (27)
dJQ 2 $1 0  $0.021  (6)
dJ 2 $1 0  $0.021  (8)
M 0 3 0  $0.000285 (15)
k2 0 3 0  $0.0241 (35)
bJ 0 3 0  $7.86 (13)
dJQ 0 3 0  $0.0137 (29)

105 M $1 5 0   0.23  (8)
χ        1.359 

 

*The parameters MΔV are given in Debye; 
parameters bJ, dJ, bJQ, i1 and i2 are dimensionless; 
the parameters bJ, dJ and bJQ are multiplied by 103. 

**The numbers in parentheses are standard 
deviations in the units of the last digit. 

 
The N2O molecule. 

 
The equilibrium configuration of this molecule in 

the ground electronic state is of C∞V symmetry.  
Therefore, in contrast to CO2 molecule, all 
vibrational transitions are allowed for N2O molecule.  
The nuclear statistics does not forbid any 
vibrational–rotational energy levels, and gives the 
same statistical weight, equal to 1 for all the 
vibrational–rotational states. The selection rules with 
respect to rotational quantum numbers and parity ε 
are given by the expression (42). 

To demonstrate the capabilities of the effective 
operator method we give here the results of 
simultaneous fitting18 of the line intensities of cold 
and hot bands of N2O molecule, lying in the region 
near 4 μm and recorded by Rachet and coauthors, 
Refs. 68–70.  The authors of Refs. 68–70 estimate 
the measurement accuracy to be 3%.  By means of 
the least–square method the intensities of the 612 
lines, from P– and R– branches of 10 parallel 
bands:  
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0001 ← 0000, 2000 ← 0000, 1200 ← 0000, 1310 ← 0110,
2110 ← 0110, 1400 ← 0200, 3000 ← 1000, 2200 ← 1000, 
2200 ← 0200 and 3000 ← 0200, have been fitted to 12 
parameters of the matrix elements of the effective 
dipole moment operator which entering into the 
equations (36) and (38).  In this case the 
eigenfunctions were used of a partly reduced effective 
Hamiltonian corresponding to the fitting, the results 
of which are given in Table VI. The set of fitted 
parameters and weighted standard deviations of 
fitting are given in Table XII. The statistical analysis 
of the fitting is given in Table XIII. As follows from 
this table and from the value of the weighted 
standard deviation χ = 0.35, we have reached the 
experimental accuracy in the line intensity 
reproduction. 

 
TABLE XII. Parameters of the matrix elements of 
the effective dipole moment operator for 14

N2
16

O 
molecule. (Series ΔP = 4). 

 

Parameter
* 

Δv1 Δv2 Δv3 Value 

M 0 0 1  0.2487 (2)** 
bJ 0 0 1  $0.125 (17) 
M 2 0 0  0.02755 (2) 
i1 2 0 0  0.0228 (9) 
i2 2 0 0  0.0044 (7) 
dJ 2 0 0  0.0105 (3) 
M 1 2 0  $0.00210 (2) 
dJ 1 2 0  0.0187 (21) 
M 0 4 0  $0.000079 (6) 
bJ 0 4 0  4.22 (45) 
M 1 $2 1  $0.0115 (9) 
M 3 $2 0  $0.000177 (5) 

χ    0.35 

 

*The values of the parameters are given in 
Debye, except the parameters bJ, dJ, i1 and i2, 
which are dimensionless.  The parameters bJ, dJ are 
multiplied by 103.  

**The numbers in parentheses are standard 
deviations in the units of the last digit; χ is the 
weighted standard deviation. 
 
TABLE XIII.  The statistical analysis of the fitting 
of Rachet et al. experimental data, Refs. 68–70. 

 

 

d = 
c.$o.
o.  × 

× 100% 

Number of lines % of lines 

0 ≤ d < 1 445 68 
1 ≤ d < 2 172 26 
2 ≤ d < 3 29 5 
3 ≤ d ≤ 5 6 1 

 

Very often, no data on line intensities are 
published in papers on experimental studies.  Instead 

such papers give intensities of bands or vibrational 
moments of transitions and Herman–Wallis 
parameters of bands.  The intensity of the absorption 
band SV(T), cm–2/atm, at temperature T, Ê, is 
defined as follows, (see, for example, Ref. 57): 

 

SV(T) = 
 

= 
8π3

3 hc
 n 

273.15
T

 C ν0 
exp ($ hc EV/kT)

QV(T)
⏐RV⏐2, (45) 

 

where ν0 is the band center, EV is the energy of the 
low vibrational state, and QV(T) is the vibrational 
partition function.  The square of the vibrational 
moment of the transition between the levels N and 
N′, which does not depend on the rotational quantum 
number, is given by the expression (Ref. 16) 
 

⏐R
Δ�

2

N′←N⏐2 =  
 

= ⏐ ∑
v1v2v3

     ∑
Δv1+Δv2+Δv3=ΔΡ

       C
v1v2v3

N⏐�2⏐
 C

v1+Δv1v2+Δv2v3+Δv3

N′⏐�′2⏐
 × 

 

× M
⏐Δ�

2
⏐

ΔV f 
Δ�

2

ΔV(V, �2) (1 + δ�2,0
+δ�′2,0 $ 2 δ�2,0 δ� ′2,0) × 

 

 ×(1+∑
i

 κΔV
i  v1 $ Δ�2 a

ΔV
k  (2 �2 + Δ�2) $ d

ΔV
JQ �2

2)⏐2.(46) 

 

The mixing coefficients C
v1v2v3

N⏐�2⏐
 in this formula 

are taken at J = �2, and parameter a
ΔV
k  is 

approximately equal to 
1
2 b

ΔV
J . 

Using expression (46) (see Ref. 17) we have 
successfully carried out the fitting of the experimental 
values of the vibrational transition moments, published 
by Toth,71 to the parameters of matrix elements of the 
effective dipole moment operator.  The series of 
transitions in 14N2

16O molecule for ΔP = 2, ΔP = 3, 
ΔP = 4, ΔP = 5 and ΔP = 6 have been considered.  As 
an example we present in this review the result of 
fitting of the vibrational transition moments for ΔP = 2 
series.  The set of fitted parameters of the matrix 
elements of the effective dipole moment operator for 
this series and the value of weighted standard deviation 
of the fitting are given in Table XIV.  The comparison 
of the calculated and experimental values of the 
vibrational transition moments is shown in Table XV.  
Several fittings have been performed.  In all fittings 
the calculated values of the vibrational transition 
moments for the transitions 0001 ← 1000 and 
0001 ← 0200 strongly differ from the experimental 
ones.  Therefore, these transitions have not been 
involved into the final fitting, the results of which are 
shown in Table XIV and Table XV.  Table XV gives 
predicted values of the vibrational transition moments 
for these transitions.  They differ considerably from 
Toth data.71  But our predicted value for the 
vibrational transition moment of the transition 
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0001←1000 is in a very good agreement with the value 
|R0001$1000| = 5.658 ⋅ 10$2 Debye, published by Lacome 
et al.27 

 

TABLE XIV. Parameters of the effective dipole 
moment, 10–2 Debye, for 14N16O2 molecule. (Series 
ΔP = 2). 

 

MΔv1
Δv2

Δv3
 Value  

 1 0 0  13.592 (44) 
 $1 0 1  $5.566  (247) 
 0 2 0  $0.867 (11) 
 0 $2 1  0.173 (50) 
 2 $2 0  $0.040  (6) 

χ 2.88 
 

TABLE XV. Calculated and experimental values of 
the vibrational transition moments of 14

N2
16

O 
molecule. (Series ΔP = 2). 

 

Transition ⎜Rv⎜ × 102 , Debye 

v′1 v′2 �2 v′3 ε′ ←v1v2�2v3

ε 

Calculation Experiment,
Ref. 71 

c. $ o.
o.

 × 100%

0111e ← 1110e 5.21 5.16(13)* 1.0 

0111f ← 1110f 5.21 5.18(13) 0.6 

0111e ← 0310e 2.06 2.07(5) $0.3 

0111f ← 0310f 2.07 2.06(5) 0.3 

0200 ← 0000 2.54 2.57(1) $1.1 

1000 ← 0000 13.46 13.36(2) 0.8 

0310e ← 0110e 3.16 3.26(3) $3.2 

0310f ← 0110f 3.16 3.23(3) $2.2 

1110e ← 0110e 13.45 13.66(4) $1.6 

1110f ← 0110f 13.45 13.68(5) $1.7 

1200 ← 1000 3.48 3.30(2) 5.4 

0400 ← 0200 4.04 4.06(3) $0.6 

0420f ← 0220f 3.47 3.49(6) $0.6 

1200 ← 0200 13.44 13.80(10) $2.6 

1220f ← 0220f 13.48 13.79(14) $2.2 

2000 ← 1000 18.95 18.76(14) 1.0 

2000 ← 0200 0.891 0.894(5) $0.3 

0510e ← 0310e 4.51 4.52 (8) $0.2 

1310e ← 0310e 13.46 13.75(46) $2.1 

2110e ← 1110e 19.0 18.6  (4) 1.9 

2110f ← 1110f 19.0 18.5  (7) 2.5 

1001 ← 0001 13.5 13.9  (6) $3.0 

1400 ← 0400 13.5 13.4  (4) 0.4 

1420f ← 0420f 13.5 13.3  (4) 1.6 

0001 ← 1000 5.37** 3.48 (2) 54.3 

0001 ← 0200 1.62** 1.42 (3) 14.1 
 

*The numbers in parentheses are standard 
deviations in the units of the last digit. 

**The value predicted. 

The values of the parameters of the matrix 
elements of the effective dipole moment operator 
obtained can be used for estimating intensities of the 

forbidden bands with Δ�2 = ± 2, because in the case 

with N2O molecule the main contribution to the line 
intensities of forbidden transitions comes from the  

�$type interaction, which may be due to the Fermi 

resonance ω1 ≈ 2ω2.  In our paper17 for the vibrational 
moments of the forbidden transitions 
v1 v2 2 v3 ← 0000, published by Toth,71 we have 
derived the following approximate expression:  
 

⏐R
Δ

�2=2

ΔV ⏐= [J′ (J′ + 1)]$1 × 
 

× ∑
2Δv

1
+Δv

2
=0

    J′C
v1+

Δv1,v2+
Δv2,0,v3

v1v2 2v3ε′  M
Δ

�2
=0

ΔV  f 
Δ

�2
=0

ΔV (V, �2) , 

 (47) 
 

where J′ and ε′ are the quantum numbers of the 
upper vibrational–rotational state.  Using the mixing 

coefficients J′C
v1+

Δv1,v2+
Δv2,0,v3

v1v2 2v3ε′
, obtained from the 

fitting of the vibrational–rotational energy levels, 

and parameters M
Δ�

2
=0

ΔV , obtained from the fitting of 
the band intensities of the allowed bands, we have 
estimated the band intensities of some forbidden 
bands. 

The results of a comparison made between the 
predicted values for the band intensities of some 
forbidden bands and those measured by Toth71 are 
given in Table XVI. 

Table XVI shows a good agreement between the 
predicted and experimental intensities for all 
forbidden bands, except for a very weak band 
0620←0000.  It should be noted that Toth in his 
paper71 does not publish even the accuracy of this 
band intensity measurements. 
 
TABLE XVI. The values of the vibrational  
transition moment predicted for the forbidden 
bands of 14N2

16O molecule. 
 

 Transition ⎜ Rv ⎜×106 , Debye 

ν0, cm$1 v′1 v′2 �′2 v′3 ε′ 

 ←v1v2�2v3 

Calcula-
tion 

Experi-
ment, 

Ref. 71*

c. $ o.

o.
 × 100 %

1177.745 0220 ← 0000 2.66 2.28  (1) 16.7 

2331.122 0420 ← 0000 0.915 0.851(22) 7.5 

2474.799 1220 ← 0000 1.38 1.26  (4) 9.5 

3373.141 0221 ← 0000 0.839 0.763 (9) 10.0 

3474.450 0620 ← 0000 0.1271 0.0659 92.9 

 

*The numbers in parentheses are standard 
deviations in the units of the last digit. 
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4. CONCLUSION 

 

This review demonstrates the potentialities of the 
effective operator approach in application to the 
problem of the global treatment of high resolution 
spectra of linear triatomic molecules.  The examples 
with CO2 and N2O molecules show, that with the help 
of this method it is possible to reach the accuracy of 
the spectra description, comparable with the 
experimental accuracy. Good extrapolation properties 
of the models proposed for both the effective 
Hamiltonian and effective dipole moment operators 
have been demonstrated.  The calculations in the frame 
of the effective operator method do not require 
powerful computers.  In our case this method is 
realized on a personal computer with a Pentium 
processor.  The main result series of the papers 
reviewed is the foundation laid for the development of 
a database on the high–temperature spectra of CO2 
and N2O molecules. 
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