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An approach to deconvolution of images of the Earth’s underlying surface 

observed under conditions of the distorting effect of the atmosphere is considered.  

A peculiarity of this approach is that in model of reconstruction we use the 

unknown point spread function to be estimated. Complementary information 

necessary for solving the problem is contained in the map of gradients and 

fragments of stochastic homogeneity of these video images. 
 

Traditional methods for correction and restoration 
of aerospace images of the Earth’s underlying surface 
are based on the use of the average statistical optical 
characteristics of the atmosphere and linear model of 
radiative transfer with the transfer operator which 
depends on the transmission coefficient. 

However, the range of variation of the 
geometrical imaging parameters and optical situations 
in the atmosphere exist when the correction of images 
with satisfactory accuracy can be made only by using 
the information about the impulse response (the point  
spread function (PSF)) of an atmospheric optical 
channel.  Necessary data can be obtained on the basis 
of model representation of the optical characteristics 
of the atmosphere considering meteorological 
situation in the region. 

It should be noted that current optical weather may 
differ substantially in the moment of imaging from the 
statistically average weather.  This results in lower 
accuracy of reconstruction of specific characteristics and 
distortion of the results of subsequent thematic 
processing. 

In this connection, we consider two approaches to a 
solution of the problem of correction for atmospheric 
contribution without a priori knowledge of the transfer 
operator of the atmospheric channel, which is also 
reconstructed from the observed image.  Necessary 
information is based on the approximate knowledge of a 
local relief of the examined region, namely, availability of 
cartographic data with indicated regions of stochastic 
homogeneity and boundaries between landscape 
formations. 

This map may be synthesized from the topographic 
map of the region or from a œgoodB satellite image of 
this territory observed under favorable optical 
conditions with subsequent processing of the image by 
the segmentation algorithm.  In other words, we assume 
that in the first approximation the examined territory 
includes quasihomogeneous landscape fragments (fields, 
forests, water surfaces, ploughed lands, and so on) and 
brightness gradients of heterogeneous landscape 

formations (water−coast, cleared strips−forest, and 
road−verge interfaces as well as fragments of 
shadowed−illuminated zones of mountain ridges, 
ravines, and so on). 

Let us assume that the distorting effect of aerosol 
components of the atmosphere is fixed on the image of 
the Earth’s underlying surface and we can represent it 
mathematically in the form of the convolution equation 
 

g(x, y) = ⌡⌠ 
 

   ⌡⌠ 
 

R 
h(x $ ξ, y $ η) f (ξ, η) dξ dη + n(x, y) , 

 (1) 
 

where g(x, y) is the radio-brightness function, that is, the 
image recorded with an electronic optical system; 
{x, y} ⊂ R; R is the domain of definition of the 
brightness function g(x, y) (omitted from further 
considerations); f(x, y) is the undistorted image of the 
surface at the scale of the image being observed; h(x, y) 
is the point spread function spatially invariant and 
axisymmetric; n(x, y) is the uncorrelated noise with zero 
mean and unknown variance (instrumental noise). 

In standard formulation of problem (1), it is 
assumed that h(x, y) is known and f(x, y) is 
reconstructed (estimated) from the observed g(x, y).  
As already mentioned, under real conditions of 
recording g(x, y), optical−geometrical characteristics of 
the channel of image transfer are random and h(x, y) is 
unknown. 

In this situation, we first should reconstruct the 
point spread function (PSF) h(x, y). 

Let us consider the following structure model of 
the videodata1 (under assumption of the Lambertian 
reflecting surface and the point light source) 
 

f(x, y) = r(x, y) I cosθ(x, y) + r(x, y) D + H ,  (2) 
 

where f(x, y) is the brightness of the image pixel with 
spatial coordinates (x, y); r(x, y) is the coefficient of 
surface reflection (depending on wavelength λ omitted 
further for simplicity); I is the solar light flux; θ(x, y) 
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is the angle between the direction of solar ray incidence 
and the normal to the surface element at the point 
(x, y); D is the diffusely scattered light; H is the 
contribution of scattering by atmospheric haze.  Let us 
write (2) in the following form: 
 

f(x, y) = r(x, y) ID + H,  (3) 

 

where ID = Icosθ(x, y) + D specifies  the illumination 
of the analyzed and fixed fragments of the Earth’s 
surface.  During a short scan period of the satellite 
registration system (of about several fractions of a 
second), this parameter remains practically constant.  
An aerosol scattering layer smears the image of the 
surface and for model (1) we will have the image of the 
form 
 

g(x, y) = ⌡⌠ 
 

   ⌡⌠ 
 

D 
h(x $ ξ, y $ η) r(ξ, η) ID dξ dη + 

+H + n(x, y). 
 

Designating r(x, y)ID = f(x, y), we derive the 
equation for the observed surface image f(x, y) with 
œfrozenB illumination during imaging period, namely 
 

g(x, y) = ⌡⌠ 
 

   ⌡⌠ 
 

D 
h(x $ ξ, y $ η) f(ξ, η) dξ dη + 

+  H + n(x, y) .  (4) 
 

Thus, the contribution of the atmospheric haze is 
additive. 

The starting a priori assumptions about the 
existence of the brightness gradient in the surface image 
fixed on the contour map of gradients allow us to 
refine2 model (4) 
 

f(x, y) = r(x, y) step(w), 

 

where step(t) =  ⎩
⎨⎧

>

1, t ≥ 0,
0, t < 0

 is the stepped brightness 

gradient (for simple presentation) along the Oz 
coordinate, perpendicular to Ow direction, and new 
local coordinates associated with the stepped brightness 
gradient, have the form: 
 

⎝
⎛
⎠
⎞z

w
 = ⎝
⎛

⎠
⎞$ sin ϕ  cos ϕ

cos ϕ   sin ϕ  ⎝
⎛
⎠
⎞x

y
 , 

 

ϕ is the angle of rotation of the new coordinate system 
zOw about the old one xOy, r(x, y) is the surface 
image without the boundary of brightness gradient, if 
this boundary is removed in any way.  In this case, 
Eq. (4) has the form: 

g(x, y) = ⌡⌠ 
 

   ⌡⌠ 
 
r(x $ ξ, y $ η) step(w $ w′)×  

× h(ξ, η) dξdη + H + n(x, y),  (5) 

where w = xcosϕ + ysinϕ; H is the contribution from 
haze and aerosol scattering in the direction toward a 
recording device. 

Upon differentiating Eq. (5) in the direction Ow 
considering that r(x, y) is a slowly varying function in 
the vicinity of the stepped jump and 
d step(t)/(dt) = δt is the delta function, we obtain the 
partial derivative in the direction Ow of the form 
 

∂g(x, y)

∂(w)  ≅ r(., 3) ⌡⌠ 
 
h(z, w) dz,  (6) 

 

where the integration is carried out in the direction of the 
Oz axis orthogonal to the Ow axis. The right side of 
Eq. (6) is nothing but the expression for a smeared 
œluminescentB line, weighted by a constant3 r(x, y); its 
effect can be eliminated by normalization of h(w). 
Scanning the observed smoothed image of the smeared edge  

∂
∂t ⌡⌠

$∞

t

  
 
⌡⌠

$∞

∞

 
 
h(z, w) dz dw  over all boundaries on the 

fragments of quasihomogeneity h(x, y) of the 
cartographic data, we reduce or remove the effects of 
r(x, y) through subsequent averaging. 

As a result, we obtain a set of different approximate 
projections for different angles ϕ of the coordinate Ow in 
Eq. (5).  Taking advantage of the topographic method for 
spatial function reconstruction from a set of projections 

h(w) = ⌡⌠ 
 
h(z, w)dz entering Eq. (6), we reconstruct the 

two-dimensional point spread function h(x, y).  When 
the form of the point spread function is rather simple, for 
example, when the function h(x, y) is axisymmetric, a 
single projection is sufficient for reconstruction of the 
spatial point spread function. 

After the reconstruction of h(x, y), we proceed to 
the problem of deconvolution of f(x, y) from Eq. (1).  
Let us take advantage of the approach based on the 
alignment of the energy spectra4 (representing the 
Fourier transform of the correlation function).  In this 
case, the image being restored is obtained as a linear 
estimate of the functional from the observed image 
having the structure analogous to (1), namely, 
 

f̂(x, y) = ⌡⌠ 
 

   ⌡⌠ 
 
l(x $ ξ, y $ η) g(ξ, η) dξ dη , (7) 

 

where l(x, y) is the kernel of the reconstructing 
operator.  In this case, it is assumed that the power 
spectrum of the estimate is equal to the power spectrum 
of the original surface image4,5 

 

F
f̂ 
(u, ν) = Ff (u, ν),   (8) 

 
where F

f̂ 
(,) and Ff  (,) are the Fourier transforms of 

the correlation functions of the estimate and image 
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(power spectra), respectively, and (u, ν) is the plane of 
spatial frequencies. 

Considering linearity of the reconstructing 
operator (7) and assumptions about the noise 
characteristics, the power spectrum of estimation 
f(x, y) is equal to 
 

F
f̂ 
(u, ν) = ⏐L(u, ν)⏐2 [⏐H(u, ν)⏐2 Ff (u, ν) + 

+ Fn(u, ν)] ,  (9) 

 
where H(u, ν) and L(u, ν) are the spatial Fourier 
spectra of h(x, y) and l(x, y), respectively, and 
Fn(u, ν) is the noise power spectrum. 

Equating the right side of Eq. (9) to the right side 
of Eq. (8), we obtain the expression for the modulus of 
the spatial-frequency characteristic of the linear filter 
aligning the power spectra 

 

⏐L(u, ν)⏐ = {⏐H(u, ν)⏐
2 + 

+ [Fn(u, ν)]/[Ff (u, ν)]}
$1/2

. (10) 

 
It can be shown that characteristic (10) of this 

filter is equal to the geometric mean of the 
characteristics of the Wiener and inverse filters. 

The spatial spectrum of the restored image, 
considering Eq. (10), is determined as follows: 

 

Ф
f̂ 
(u, ν) = L(u, ν) G(u, ν) ,  (11) 

 
where G(u, ν) is the spatial Fourier spectrum of the 
observed image g(x, y).  Finally, taking the inverse 
Fourier transform of the spectrum Ф(,), we obtain the 

sought-after estimation f̂(., 3) of f(x, y). 
Now let us consider the second variant of 

reconstruction of h(,).4, 5  In contrast to the first 
variant using the smeared boundaries of brightness 
gradients, in this case the information is used about the 
correlation characteristics of the signal (image) and 
noise for quasistationary fragments of the observed 
image.  To realize this method, we decompose the 
observed image of the fragment of quasistationarity of 
the distorting effect of the atmosphere and landscape on 
fragments; for each fragment we can write 
 

g
i(., 3) = h(., 3)* f i(., 3) + ni(., 3) ,  (12) 

 

where the asterisk denotes the operation of convolution 
(1), i = 1,..., N, N is the number of fragments.  The 
power spectrum of every fragment, in accordance with 
Eq. (9), has the form 

 

F
i
g(u, ν) = ⏐H(u, ν)⏐

2 Ff (u, ν) + Fn(u, ν), 
i = 1, ... , N. (13) 

 

Now, we average the power spectra of various 
fragments of the image for the quasistationary fragment 
of the videodata.  In this case, random deviations of the 
power spectra of fragments are smoothed and the 
average estimate has the form 

 

1
N

 ∑
i=1

N

 F i
g(u, ν) = 

1
N

 ∑
i=1

N

 [⏐H(u, ν)⏐
2 Fi

f (u, ν) +  

+F
i
n(u, ν)] = ⏐H(u, ν)⏐

2 F̂f (u, ν) + F̂n(u, ν),  (14) 

 

where F̂f  (u, ν) and F̂n(u, ν) are the estimates of the 
power spectra of signal and noise, respectively.  The 
estimation of the modulus of the transfer function we 
obtain from Eq. (14): 
 

⏐H(u, ν)⏐
2 =  

= 
⎣
⎢
⎡

⎦
⎥
⎤1

N
 ∑
i=1

N

 F i
g(u, ν) $ F̂n(u, ν)  /[F̂f (u, ν)] ,  (15) 

 

then reconstructing linear operator (10) has the form 
 

⏐L(u, ν)⏐ = 

= 
⎩
⎨
⎧

⎭
⎬
⎫1

N
 ∑

i=1

N

 Fi
g(u, ν)/[F̂f (u, ν)] $ 

F ^n(u, ν) 

F̂f (u, ν)
 + 

Fn(u, ν) 
Ff (u, ν)

$1/2

.  

 (16) 

 

When F̂n and F̂f are close to true Fn and Ff  , 
 

L(u, ν) ≅ 
⎩
⎨
⎧

⎭
⎬
⎫

F̂f (u, ν)/
⎣
⎢
⎡

⎦
⎥
⎤1

N
 ∑
i=1

N

 F i
g(u, ν)  

1/2

.  (17) 

 

To estimate the power spectra of the image and 
noise entering Eqs. (16) and (17), it is natural to use 
the videodata obtained for the period of preceding 
observations under œgoodB conditions of vision.  The 
spectral representation of the reconstructing operator 
(7) so obtained is used in Eqs. (11) for the 
deconvolution of the image. 

As a result, using a priori information about the 
landscape characteristics, tentatively called 
cartographic data, we can reconstruct, in principle, the 
transfer operator describing aerosol effects of the 
atmosphere and the surface image itself.  For practical 
implementation of the above-indicated approach, one 
should classify the atmospheric situations and 
parameterize the point spread function which depends 
on these situations as well as to supplement the 
procedure of reconstruction of h(,) and f(x, y). 

These problems will be considered in our future 
paper that will be published in the Journal Atmospheric 

and Oceanic Optics in 1997. 
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