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The paper describes the errors in the estimates of the turbulent energy 

dissipation rate based on the likelihood maximum from time spectra of wind 

velocity measured with an acoustic anemometer and a Doppler lidar. 
 

1. INTRODUCTION 

 

At present some methods are available for 
determining the turbulent energy dissipation rate in the 
atmosphere. As a rule, the regularities of inertial 
interval of turbulent variations of the air flow rate are 
used.1$3 The assessment of the dissipation rate from the 
time spectrum of the measured wind velocity is most 
generally employed.  In this case the hypothesis of 
frozen turbulence is used.1 

The accuracy of the dissipation rate estimates from 
the wind velocity time spectrum is governed by various 
factors, namely, the state of the atmosphere (intensity 
and typical scales of turbulence), duration and 
geometry of sounding, method of data processing, noise, 
and so on.  Therefore when planning the measurements 
of the dissipation rate it is important to have the 
results of preliminary calculations of the error of the 
parameter being considered depending on the above-
mentioned factors.  This paper presents the analysis of 
such an error when estimating the turbulent energy 
dissipation rate from time spectrum of wind velocity 
based on the likelihood maximum. 

 
2. ESTIMATION OF THE DISSIPATION RATE 

 

Let we have a the succession of the values of wind 
velocity V(Δtm), measured during T = ΔtM, where 
m = 0, 1,..., M $ 1; Δt is the discreteness interval.  
Using the fast Fourier transform we can obtain from 
this succession a one-sided function of spectral density 
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Let us assume that for analyzing the time 
statistical characteristics of the measured wind velocity, 
V(t), the hypothesis of frozen turbulence is used.1  

Then at large T when Š >> τk (here τk is the time of 
wind velocity correlation) the frequency interval  
[f1, f2] can be chosen within the limits of which the 

estimate of Ŝ(f) is unbiased (i.e., <Ŝ(f)> = Ŝ(f), 
where <...> is the averaging over the ensemble) and its 
average value is described by the formula 

 

S(f) = ε2/3 Q(f), (2) 

 
where ε is the mean rate of the turbulent energy 
dissipation; Q(f) is the function whose parameters are 
the mean wind velocity U and the size of the volume 
sounded.  In particular, when measuring the 
longitudinal component of wind velocity at a fixed 
point Q(f) = 0.15 U 2/3/f 5/3, Refs. 1$3.  The 
frequency f1 = k1/T is the lower limit of the inertial 
interval, and f2 = k2/T corresponds to the highest 
frequency at which the noise contribution to the 
measured spectrum can be neglected. 

Having used Eq. (2) we obtain the estimate of the 
turbulent energy dissipation rate from n estimates of 

the spectral density Ŝi = Ŝ[(k0 + i)/T] at the 
frequencies falling within an interval being studied, 
where k1 ≤ k0 and k0 + n ≤ k2, i = 1, 2,...,n.  The 
complex random value Z(k/T) has due to the 
condition T >> τk the normal probability density 
distribution with zero mean value and equal variances 
for the real and imaginary part Z, proportional to the 
mean spectrum S(k/T).  Then the probability density 

of the Ŝi ~ ⏐Z⏐
2
 spectrum estimate will be distributed 

exponentially.  In this case, the Ŝi and Ŝl estimates (at 
i ≠ 1) are independent.  Hence, the probability density 

of the vector Ŝ = {Ŝ1, Ŝ2,...,Ŝn} has the form 
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where, in accordance with the Eq. (2), Si = ε
2/3

Qi, 
Qi = Q[(k0 + i)/T].  When the values Qi are 

considered to be known, the dissipation rate ε̂ can be 
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determined from the vector Ŝ based on the likelihood 
maximum.4  To do this one must take the derivative of 
the logarithmic likelihood function with respect to ε  
 

L(ε) = ln P(Ŝ) = $ ∑
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and it is necessary to solve the equation 
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As a result we have 
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3. STATISTICAL CHARACTERISTICS OF THE 

DISSIPATION RATE ESTIMATE  

 

Let us divide both parts of the expression (6) by 
the mean value of the dissipation rate ε.  Then, taking 
into account Eq. (2), the normalized value of the above 
estimate can be written as follows: 

 

ε̂/ε = x3/2
n , (7) 

 
where 
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in accordance with Eq. (3) we have the following 
gamma-distribution of the probability density: 
 

P(xn) = (nn/[Γ(n)]) xn$1
n  e

$nxn , (9) 

 
where Γ(n) is the gamma-function; xn ∈ [0, ∞].  For 

the mean value of x
ν

n we have 
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Having used this formula, for the mean normalized 

value of B = <ε̂/ε> and relative random error 

E = [<(ε̂/ε)2> $ B2]1/2 of the dissipation rate 
estimate we have 

 

B = Γ(3/2 + n)/[n3/2 Γ(n)]; (11) 
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where the characteristics of the gamma-function 
Γ(3 + n) = n(n + 2)Γ(n) were used. 

From Eq. (11) it follows that in the general case 
B does not equal 1, i.e., the estimate of ε is biased.  
The complete magnitude of the error, taking into 
account the biased estimate, is determined by the 

formula (see Ref. 5) A = [E2 + (B $ 1)2] 1/2.  At n = 1 

we have from Eqs. (11) and (12) that (3/4) π ≈ 1.33 

and E = 6 $ 9π/16 ≈ 2.06.  Such estimates of ε̂ are 
1.33 times greater than ε; and their random variance 
relative to ε is significant.  Consider now the case of 
n >> 1 which is of interest for a practical use.  In 
Eqs. (11) and (12) we may take the asymptotic 
formula6 
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Having expanded Eqs. (11) and (12) into a power 

series over n$1 and having subtracted the components 
making the basic contribution to the corresponding 
characteristics, we obtain 
 

B = 1,   E = 
3
2
 

1

n
 , (14) 

 

hence it follows that at n >> 1 the estimate of ε̂ is 
unbiased and its error is proportional to n$1/2. 

 

4. COMPARISON WITH THE EXPERIMENTAL 

DATA 

 

To check the obtained dependences of B and E on 

the number n of spectral components Ŝi chosen for 
estimating the dissipation rate the results of wind 
velocity measurements were used.  The wind velocity 
was measured with an acoustic anemometer7 at 6 m 
height above the ground. 

The estimate of the mean wind velocity Û, 
obtained from these data, equals 3.45 m/s.  The 
wind velocity spectrum is calculated by formula(1).  
Figure 1 shows a smoothed (averaged) over 100 
statistical degrees of freedom spectrum.  Dashed lines 
show the interval [f1, f2].  Using all the estimates of  

Ŝi in this interval, the mean dissipation rate $ε  is 
calculated by formula (6) (where the values Qi are 

equal to 0.15(Û$ε) 2/3[(k0 + i)/T] $5/3).  The mean 

dissipation rate equals 0.046 m2/s3.  In calculations 

of the first and second moments of the value x
3/2
n  by 

formula (8) for Si we use the expression  

Si = 0.15(Û$ε) 2/3[(k0 + i)/T] $5/3.  The result of 
calculation of such components of Si spectrum is 
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given in Fig. 1 as a straight line in the frequency-range 
studied [f1, f2]. 

 

 
 

FIG. 1.  Wind velocity spectrum. 
 

The experimental dependences of B and E on n are 
denoted by small crosses and squares in Fig. 2. 

 

 
 

FIG. 2.  The dependence of the normalized B value  
and of the relative random error E of the estimate of 
the turbulent energy dissipation rate on the number n 
of spectral components used in data processing.  The 
data for B are denoted by small crosses and curve 1; 
the data for E are denoted by small squares and curve 
2; the experimental data are denoted by small crosses 
and squares; the theoretical data are denoted by solid 
curves. 

 

In Fig. 2 solid curves show similar theoretical 
dependences (curve 1 $ B, curve 2 $ E) calculated by 
formulas (11) and (12).  The error of the experimental 
values E does not exceed 15%.  This figure 
demonstrates quite good agreement between theory and 

the experiment.  At n = 10 the estimate ε̂ is practically 
unbiased (B ≈ 1), but the relative error is great and is 
about 50%. 

 

5. THE ACCOUNT FOR ERROR IN THE MEAN 

WIND VELOCITY ESTIMATE  

 

According to Eq. (14) the error of estimate of the 
dissipation rate can be made as small as desired by 
increasing n.  So, at a maximum value n = 800, realistic 
for the experiment, E ≈ 0.05.  However, in real 
situations, the error will be larger because of the error 

in the estimate of the mean wind velocity Û.  The 
experimental data, presented in Fig. 2, may be 

represented by the expressions <ε̂Û/εU> and  

[<(ε̂Û/εU) 2> $ <ε̂Û/εU>2] 1/2, where U is the true 
mean wind velocity.  Therefore, taking into account the 

difference between Û and U, for the normalized estimate 
of the dissipation rate, obtained from the results of the 
wind velocity measurements at a point, we must use the 
following expression instead of Eq. (7):  

 

ε̂/ε = (U/Û) x
3/2

n . (15) 
 

In the measurements with a cw Doppler lidar the 
time spectrum of wind velocity S(f) is the product of the 
wind velocity time spectrum at a fixed point, being at the 
center of a volume sounded, by H(f), the function of a 
low-frequency filter determined by a longitudinal size Δz 
of this volume.  The form of this function is given, in 
particular, in Ref. 8.  At Δz → 0 the function H(f) → 1 
and then the normalized estimate of the dissipation rate 
will be determined by Eq. (15).  In the other limiting 
case of large values of Δz the following formula is derived 
for the spectrum in Ref. 8: 
 

S(f) = 0.06 ε 2/3 (U sinγ) 5/3 (1/Δz) f $8/3 , (16) 
 

where γ is the angle between the wind direction and the 
axis of the sounding beam. 

The data on U and γ can be obtained, for example, 
from additional measurements using a scanning Doppler 
lidar.  It is reasonable that the measured value of the 

velosity Û is different than the true mean value of U.  
From Eqs. (2), (6), (16) and (17), taking into account 
this difference and ignoring the error in estimates of the 
angle γ, we obtain the expression 

 

ε̂/ε = (U/Û) 
5/2

 x
3/2

n
. (17) 

 

It is assumed that in Eqs. (15) and (17) the error 
~
U = Û $ U is small as compared with U.  Then for ε̂
/ε one can write the approximate formula 

 

ε̂/ε = (1 $ α U
∼

/U) x3/2
n , (18) 

 

where for the case of point measurements α = 1, and 
when measuring with a Doppler lidar in a large volume 
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α = 5/2.  If the estimate of wind velocity is unbiased 

<(Û = U)>, then, as it was noted above, at large n the 
estimate ε̂ is also unbiased (B = 1).  From Eqs. (7)$
(14) and (18) at n >> 1 for the relative error E, taking 
into account the fluctuations of the estimate of mean 
wind velocity we obtain 
 

E = [9/(4n) + α
2
 σ

2

Û
]1/2, (19) 

 

where σ
2

Û
 = <(U

∼
/U)

2
> is the relative variance of the 

wind velocity estimate. 
From Eq. (19) it follows that in the case of small 

errors of wind velocity estimates satisfying the 
condition 

 

α
2
 σ

2

Û
 << 9/(4n), (20) 

 

the values of E for a point meter and a Doppler lidar 
will not differ at one and the same number n.  If we 
have the inverse condition 

 

α
2
 σ

2

Û
 >> 9/(4n), (21) 

 

then at the same accuracy of the mean wind velocity 
measurements the error of the lidar dissipation rate is 
2.5 times as large as that obtained with a point meter, 
in particular, the acoustic anemometer that used in the 
experiment.  Since at large n the condition (21) is quite 
realistic, the requirements for the accuracy of 
estimating the mean wind velocity in the Doppler lidar 
measurements of the dissipation rate should be more 
rigid than in the case of the acoustic anemometer. 

Assume that in the point measurement the velocity 

Û is determined by the time averaging over the period 

T >> τk.  Then for σ
2

Û
 under stationary conditions the 

following formula2 is valid: 
 

σ
2

Û
 = 2σ

2
U τk/T, (22) 

 

where σ 2
U = 〈V2〉/U2 $ 1 is the relative variance of 

instantaneous values of wind velocity. 
Thus for E we have 
 

E = [9/(4n) + 2σ
2
U τk/T]1/2. (23) 

 

In the experiment, whose results are shown in 

Figs. 1 and 2, σ 2

U
 = 0.12, τk = 15 s, and T = 720 s.  For 

such parameters the second component in Eq. (23) 
equals 0.005.  The maximum n in this experiment was 
n = 800 and the first component in Eq. (23) was 
0.0028.  As a result the relative error of the dissipation 
rate measurement is about 10% that is twice as much as 
the corresponding value obtained above without the  
account for fluctuations of the estimates of the mean 
 

wind velocity.  Assume that the estimate of ε̂ was 
obtained from the Doppler lidar data at the same n 

and σ
2

Û
 (n = 800, σ

2

Û
 = 0.005).  Then according to 

Eq. (19), where α = 5/2, the relative error of such 
an estimate equals approximately 24%. 

 

6. CONCLUSION 

 
This paper describes the analysis of the influence 

of the number of unsmoothed estimates of the 
spectrum and measurement error of the mean value of 
wind velocity on the accuracy of the estimate of the 
turbulent energy dissipation rate based on the 
likelihood maximum.  The paper presents the 
measurements of wind velocity using an acoustic 
anemometer (the œpointB meter) and a cw Doppler 
lidar at a large size of the volume sounded.  It is 
shown that the influence of the measurement error of 
mean wind velocity on the accuracy of estimates of 
the dissipation rate is more essential in the case of a 
Doppler lidar measurements. 

It should be noted that in the case of wind 
velocity measurement at a fixed point the use of the 
hypothesis of turbulence œfreezingB, aimed at setting 
in Eq. (2) the function Q(fi) in an explicit form is 
always practically justified.  The same can be stated 
for the wind velocity measured with a Doppler lidar 
in a large volume sounded provided that the side 
wind was strong when the fluctuations of the 
averaged over the sounding volume wind velocity are 
mainly defined by the transfer of turbulent eddies by 
the mean flow without evolution of eddies during the 
lifetime in the range of the laser beam localization.  
It has been found experimentally that at small angles 
γ and low wind9,10 for the analysis of the wind 
velocity determined from a large volume of lidar 
sounding the hypothesis of the œfrozenB turbulence is 
unacceptable.  Therefore, if Eq. (16) is used for such 
conditions, a considerable bias of the estimate of the 
turbulent energy dissipation rate can occur. 
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