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Rigorous mathematical expressions for expanding the transmission functions 
into the series of exponents derived by the authors earlier are applied in the 
present paper to calculation of the water vapor transmission functions, which are 
necessary to evaluate the fraction of solar radiation going through the Earth’s 
atmosphere in the near infrared region of spectrum (2800$14200 cm$1). The results 
are compared with the data obtained using other methods. 

 

1. In studies of the climate changes in the context 
of climate models the major part of calculation efforts 
falls on the description of absorption by atmospheric 
gases. To reduce the volume of calculations different 
approximations of the transmission functions by a series 
of exponents are widely applied. The mathematical 
problem originates from the fact that the transmission 
function 

 

P(x) = 
1
Δω ⌡⌠

ω1

ω2

 e$i(ω)x dω, (1) 

 
(where i(ω) is the absorption coefficient at the 
frequency ω, x is the optical density, Δω = ⏐ω1 $ ω2⏐) 
should be represented as a series 
 

P(x) = ∑
k

 ck e
$λkx  (2) 

 
(ck and λk are the expansion coefficients) with a 
minimum number of terms which is still compatible 
with the required calculation accuracy. The problems 
associated with the transition from Eq. (1) to Eq. (2) 
were studied in a number of papers, see, for example, 
Refs. 1, 2, and references therein. 

Different ways of calculation of ck and λk can be  
divided by convention into two groups using the next 
representations of the transmission function followed by 
the transition to the formulas of integration of the type 
of Eq. (2) 

 

P(x) = 

1
Δω ⌡⌠

ω1

ω2

 e$i(ω)x
 dω = ⌡⌠

0

∞

 f(s) e$ksds = ∑
ν

 b
ν

 e$xs
ν

 = (3a) 

 

= ⌡⌠
0

1

 e$s(g)x dg = ∑
ν

 a
ν
 e$xs(g

ν
).  (3b) 

In the case (3a) (see, for example, Refs. 1 and 2) 
the function f(s) is calculated as the Laplace transform 
of P(x) and therefore it depends on the 
thermodynamical parameters of the medium. 
Consequently, the quantities b

ν
 include this dependence 

as well. In other words, the search for optimal values 
of b

ν
 requires the calculation of polynomials orthogonal 

in the interval [0, ∞) with the weight f(s), that is too 
a cumbersome task that is never performed. This leads, 
in particular, to complexities in calculation of the 
integrals over inhomogeneous paths resulting in 
assumptions like the hypothesis on the correlated 
spectra for different thermodynamical conditions. 
Modifications of the method such as separation of the 
spectral lines of the absorbing gas into the groups as 
though they belong to some hypothetical gases,3 the 
isolation of the multipliers dependent on 
thermodynamical characteristics from the absorption 
coefficients,4 subdivision of the absorption into that the 
line center and in the line wing5 attempt to overcome 
these difficulties. It is hard to tell whether they can be 
adequately resolved in this way, especially if taking 
into account the fact that in derivation of Eq. (3a) the 
mathematical actions are usually assumed, that are not 
rigorously substantiated (see the corresponding analysis 
in Refs. 6 and 7).  

The approach developed by the authors6$9 realizes 
the program (3b), which has some advantages as 
compared to (3a). Thus, rigorous expression for the 
function g(s) was derived, so that the application of 
conventional formulas of integration (for example, that 
by Gauss or Chebyshev) results in coefficients a

ν
 in 

Eq. (3b), which are independent of thermodynamical 
conditions and, in addition, are optimal being 
associated with polynomials orthogonal in the interval 
[0, 1].  This circumstance removes the problems in the 
integration over inhomogeneous paths and allows one to 
apply this technique to evaluation of integrals 
including the source function. 
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The expansion procedures using a priori values of 
the coefficients b

ν
 (Refs. 10, 11) are to a large extent 

efficient and give a solution to the problems associated 
with inhomogeneous paths and actually are closely 
related to the method developed in Refs. 6$9.  

In this study, the H2O transmission functions in 
the near infrared are calculated using their expansion 
into a series of exponents, whose coefficients according 
to the method6$9 are independent of thermodynamical 
parameters. The comparison of the results of the present 
calculation with those obtained using other 
modifications of the expansion of the transmission 
functions into the series of exponents illustrates the 
advantages of the method developed here.  

2. The line-by-line calculations of the absorption 
coefficients required for the construction of the g(s) 
function by Eq. (3b) were performed by making use of 
the spectroscopic data base12 with the step 0.01 cm$1 
and with the Lorentzian line shape prolonged up to 20$
25 cm$1 from the line center. The function g(s) 
corresponding to the absorption coefficient at a given 
temperature and pressure in a given spectral interval 
was calculated by the formula 

 

g(s) = 
1
Δω ⌡⌠

i(ω) ≤ s, ω∈[ω1,ω2]

          dω, (4) 

 
obtained from Eq. (1) without any approximations.6 
The function s(g) in the integral (3b) was found as an 
inverse function of s(g) and the integral (3b) was 
represented as a sum of exponents using some variants 
of the Gauss and Chebyshev formulas of integration, 
namely, with 5, 6, 7 and 6, 7, 9 nodes, respectively. In 
so doing, as was mentioned above, the weights a

ν
 were 

standard for the formulas of integration, i.e. they were 
independent of temperature, pressure and optical 
density, whereas s(g

ν
) were equal to the values of s(g) 

at the points corresponding to the standard nodes of the 
formulas of integration. Furthermore, the transmission 
functions P(x) at arbitrary optical densities were 
calculated according to Eq. (3b), i.e. the special 
optimization of the expansion coefficients for a wide 
interval of values of optical densities was not 
performed. 

3. The general view of the H2O spectrum in the 
near infrared region is shown in Fig. 1, where the line 
intensities are presented summed over the intervals of 
10 cm$1. Transmission functions and the expansion 
coefficients in the corresponding series of exponents 
were calculated for wide spectral intervals involving 
the H2O absorption bands 0.72, 0.82, 0.94, 1.14, 1.38, 
1.87, 2.7, and 3.2 μm. The integral transmission 
functions for some bands are shown in Fig. 2. The 
results obtained are presented in the figure for the 
minimum number of terms in the series, which is equal 
to 5. They well agree with the line-by-line calculations 
and with the results10 obtained using direct fitting of 
the transmission functions at different optical densities 

by sums of exponents with prescribed weights.  The 
relative errors of the calculations are illustrated in 
Fig. 3 by the example of the 1.38 μm band.  

 

 
 

FIG. 1. Sums of intensities of the H2O spectral lines 
within the intervals of 10 cm$1 in the visible and near 
infrared. 
 

 
 

FIG. 2. Integral transmission functions for some water 
vapor bands in the near infrared region. Curves are 
calculated by the line-by-line method. Calculations10 
coincide with the curves at the scale of the figure and 
therefore are not shown here. The results of our 
calculations are marked by circles. T = 260 K, 
P = 500 mb. Curves 1, 2, 3, 4 refer to the bands 2.7, 
1.38, 0.94, and 0.72 μm, respectively. 
 

 
 

FIG. 3. Relative errors of the approximation of the 
transmission function calculated by the line-by-line 
method for the 1.38 μm band by the series of exponent 
as a function of optical density. Curves 1, 2, 3 are 
obtained using Gauss formulas of integration with 5 
and 7 nodes and by Chebyshev formulas of integration 
with 7 nodes, respectively. 
 

The results of cell measurements of spectral and 
integral water vapor transmission functions in the near 
infrared can be found in Ref. 13. The transmission 
functions calculated in the present paper are shown in 
Fig. 4 in comparison with the experimental data13 and 
with that calculated in Ref. 10. The values obtained 
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from the empirical formulas by Moskalenko14 are also 
shown in the figure. Note that use of empirical formulas 
in calculations of  the transmission functions yields, on 
the whole, satisfactory results. As  an example, Figure 
5 shows the absorption spectrum in the 1.14 μm band, 
the experimental one,13 calculated in the present paper, 
and that calculated with formulas.14  

 

 
 

FIG. 4. Equivalent widths of the water vapor bands in 
the near infrared vs optical density, T = 296 K, 
P = 1 atm. Curve presents the experimental data,13 1, 
2, 3 refer to calculation from Ref. 10, present 
calculation, and the calculation by empirical 
formulas.14 

 

 
 

FIG. 5. Water vapor absorption spectrum within the 
1.14 μm band. Curves describe experimental data13 at 
P = 0.13 atm, x = 0.862 g⋅cm$2 (1) and at P = 1 atm, 
x = 0.853 g⋅cm$2 (2); the present calculation (3) and 
the results of calculation by empirical formulas14 (4) 
are also shown in the figure. 

 

In common practice, to diminish the volume of 
calculations the transmittance is calculated rigorously 
at some intermediate atmospheric conditions and then 
the temperature and pressure dependence is taken into 
account in an approximate way. Thus, in Refs. 10, and  
 

 

11 a one-parameter scaling approximation is used for 
this purpose   
 

exp ($ i
ν
(P, T) x) ≅ exp ($ i

ν
(Pref, Tref X));  

 

X = f(P, T) x = 
P

Pref
 x (5) 

 

with Pref =500 mb, Tref = 260 K. The extent to which 
this approximation is applicable is shown in Fig. 6. The 
calculation with this approximation well agrees with 
the line-by-line calculation at standard temperature and 
pressure and slightly differs from it at low temperatures 
and pressures. The calculation using the series of 
exponents coincides with  the line-by-line calculations 
within the scale of the figure. 
 

 
 

FIG. 6. Transmission functions for the 1.38 μm band. 
Curves present the line-by-line calculation at 
Š = 260 K, p  = 0.5 atm (1), Š = 292 K, p  = 0.9934 atm 
(2), Š = 220 K, p  = 10$4 atm (3); circles denote the 
calculation with the use of approximation (1). 
 

The detailed calculations of the transmission 
functions based on the technique of their approximation 
by the series of exponents similar to that in Ref. 10 in 
the spectral region 1.125$1.135 μm were performed in 
Ref. 11 for the atmospheric model from Ref. 15. for the 
midlatitude summer. The model characteristics are 
listed in Table I. In Figure 7 the transmission function 
behavior is shown for three atmospheric layers as a 
function of the H2O optical density (the curves present 
line-by-line calculation and the calculation11 with the 
improved variant of the exponential fitting, points are 

the results of this paper).  
 

TABLE I. Characteristics of the climate model. 
 

Number 
of  

a layer

Top of 
layer, km

Bottom of 
layer, km 

Š, K p , atm x, g/cm2

1 90.0 10.0 220.0 0.0003 6.400⋅10$5

2 10.0 9.5 238.0 0.2890 4.000⋅10$3

3 9.5 7.0 245.0 0.3558 4.800⋅10$2

4 7.0 5.0 261.0 0.4794 1.217⋅10$1

5 5.0 3.0 270.0 0.6190 3.633⋅10$1

6 3.0 2.0 282.0 0.7447 4.412⋅10$1

7 2.0 1.0 287.5 0.8394 7.407⋅10$1

8 1.0 0.0 292.0 0.9434 1.141⋅100
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FIG. 7. Transmission functions for separate 
atmospheric layers in the spectral region  
1125$1135 cm$1. Curves present the line-by-line 
calculation  and the calculation11 with the improved 
variant of the exponential fitting, the circles show our 
results, the numbers at curves are the numbers of layers. 
 

Figure 8 illustrates the calculations for 
inhomogeneous paths in the same spectral region. The 
curves characterize the absorption from the upper 
boundary of the atmosphere up to a certain layer, other 
notations are the same as in Fig. 7. Table II lists an 
example of the transmission calculation for an 
inhomogeneous path 

 

P(l) = ∑
ν

 a
ν
 exp 

⎣
⎡

⎦
⎤$ 

⎝
⎛

⎠
⎞∑

j

 s(g
ν
, lj) Δlj  mr  

 

from the upper boundary of the atmosphere up to the 
layer lj, with the value of the optical density chosen as 
in Ref. 11, i.e. mr = x(r/4), r = 1, ..., 35. 
 

 
 

FIG. 8. Transmission functions showing the 
transmittance from the upper boundary of the 
atmosphere up to a certain layer, notations are the 
same as in Fig. 7. 

TABLE II. Example of calculation of transmission for 
the inhomogeneous path, n = 5, r = 10. 
 

   ν    

 1 2 3 4 5  

   a
ν
    

 0.1185 0.2393 0.2844 0.2392 0.1185  

Number 
of  

a layer

a
ν
 exp 

⎣
⎡

⎦
⎤$ 

⎝
⎛

⎠
⎞∑

j

 s
 

(g
ν
,
 
lj) Δlj  mr  P(l1 →lj)

1 0.1185 0.2393 0.2844 0.2393 0.1185 1.0 
2 0.11845 0.2389 0.2834 0.2346 0.09453 0.970
3 0.1178 0.2340 0.2696 0.1780 0.0050 0.804
4 0.1157 0.2193 0.2311 0.0780 0.00001 0.415
5 0.1083 0.1737 0.1332 0.001 0.00001 0.288
6 0.09843 0.1262 0.0633 0.00001 0 0.169
7 0.0822 0.07029 0.0165 0 0 0.078
8 0.06071 0.02642 0.0017 0 0 0.034

 

Note in conclusion that the method of expansion of 
the transmission functions into the series of exponents 
based on the rigorous mathematical expressions for 
their coefficients6$9 provides sufficient accuracy of 
calculation even at the absence of special procedures 
improving the fitting and allows one to generalize this 
technique to the case of more complicated integrals 
incorporating the transmission function while keeping 
mathematical rigor and simplicity of numerical 
calculations. Thus, the calculation for inhomogeneous 
paths reduces just to a few summations.  

By this means the proposed method of calculations 
of the transmission functions is well suited for solving 
the climate study problems. 
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