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A method for sounding of an underwater acoustic channel with broadband 
chirps with preliminary signal processing by the frequency compression method is 
analyzed on the basis of the theory of linear systems.  The dependence of a 
recorded spectrum on group delays in the channel and current frequency of 
sounding signal is obtained.  It is shown that the result of processing of an 
individual sampling of received signal under several commonly used assumptions is 
mathematically equivalent to sounding with narrow-band complex signal whose 
delays determine the maxima of recorded signal modulus. 

 
Signals with linear frequency modulation (chirps) 

are widely used in acoustic and radar sounding of 
natural media including underwater sound channel,1 
the upper atmosphere, and the Earth’s ionosphere.2  
Their abundance is conditioned by the fact that chirps 
have large bases (bandwidth-duration products), which 
allows the diagnostics capabilities of sounding systems 
to be increased.  There are different methods of chirp 
processing either in the temporal or in the frequency 
domain. 

A successive description of widespread method for 
long chirp processing typically named œfrequency 
compression methodB is given in this paper. 

The necessity of special consideration of this 
method stems from the fact that usually an analysis of 
long chirps (with large frequency deviation) is based on 
consideration of the chirps with relatively narrow 
bandwidths.  In so doing, the radiated chirp with large 
frequency deviation is considered as a set of individual 
narrow-band chirps whose propagation is analyzed by 
the methods used for the narrow-band chirps. 

The essence of the frequency compression method 
is that in a receiver the chirp is multiplied by a 
reference frequency-modulated signal having the same 
rate of frequency variation with a certain temporal 
delay.  After multiplication of the reference signal by 
the received chirp a low-pass filter separates the signal 
at difference frequency, which contains the information 
about the propagation channel.  Because the frequency 
difference between the received chirp and the reference 
signal is proportional to the propagation time, a 
spectral analysis of the filtration result after strobing 
with a temporal window permits one to obtain the 
œdelay spectrumB of the received chirp on the reference 
signal frequency corresponding to the strobing interval 
center. 

Therewith, portions of the chirp emitted at 
different times and coming simultaneously with 
 

different frequencies could enter the receiver.  These 
portions are spaced through the spectrum, but the 
recorded spectrum is in fact a superposition of different 
portions of the emitted chirp; hence, it is profitable to 
analyze in detail the recorded spectrum considering the 
propagation channel and a real data processing scheme. 

Let us consider in detail the frequency compression 
method.  Let the transmitted chirp takes the form 
 
u(t) = a(t) cosϕ(t) = a(t) cos (ω0t + βt2/  2), (1) 
 
where a(t) is the envelope with duration of several 
seconds or minutes, ω0 is the initial cyclic carrier 
frequency and β is the rate of the cyclic frequency 
change.  In this case, the frequency deviation is 
Δω�=�βT, where T is the chirp duration.  As a rule, the 
employed chirps have large bases, the product of the 
chirp duration on the total bandwidth βT > ω0, and the 
total chirp base is about 105$106. 

In the receiver the signal u1(t) transmitted 
through the channel with impulse transfer 
characteristic h(x) 

 

u1(t) = ⌡⌠
0

∞

 h(x) u(t $ x) dx (2) 

 
is multiplied by the reference signal u(t $ t0) 
(delayed by t0 from the transmitted signal).  The 
resulting signal after transmission through the low-
pass filter (with the impulse transfer characteristic 
hf(t)) produces the signal 
 

u2(t) = ⌡⌠
0

∞

 h(x) r (t, x) dx  (3) 

 

at the filter output, where 
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r (t, x) = ⌡⌠
0

∞

 hf (z) u(t $ t0 $ z) u(t $ x $ z) dz. (4) 

 
The function r (t, x) specifies the result of low-

pass filtration of the product of two chirps containing 
difference and summed frequencies.  The low-pass filter 
bandwidth Ft is usually chosen much less than ω0, so 
the summed frequencies are practically completely cut 
off. 

After the low-pass filtration, instead of Eq. (4) we 
obtain the following (simplified) formula: 

 

r (t, x) = 
1
2 ⌡⌠

0

∞

 hf (z) a(t $ z; t0, x) cosϕ(t $ z, x) dz, (5) 

 

where the designations =(t $ z; t0, x) = =(t $ z $ x) × 
× =(t $ z $ t0) are used and the cosine argument 
ϕ(t, x) is given by the relation  
 

ϕ(t, x) = ψ(x) + tγ(x) = 
 

= [ω0 (x $ t0) + β(t20 $ x2)] + tβ(x $ t0). (6) 
 

For x $ t0 << T the narrow-band signal (as a 
function of (t $ z)) is in the integrand of Eq. (5) with 
the carrier frequency equal to β(x $ t0) and the 
envelope equal to the product of the chirp envelopes.  
In fact, this is the controlling condition for the 
selection of t0. Because the range of variation of x 
(delays) depends on the signal propagation channel and 
is known a priori, t0 is chosen so that the quantity 
β(x $ t0) $ the difference frequency $ falls into the 
filter bandwidth, which is much less then the initial 
frequency and the total signal bandwidth.  The latter 
means that the pulse duration a(t $ z; t0, x) equal to 
T $ (x $ t0) differs from T only insignificantly, that is, 
at the filter input the difference frequency signal is 
truly narrow-band.  In some cases in which very short 
delays are analyzed, t0 can be chosen negative; in so 
doing not only delayed but also advanced frequencies 
enter the receiver.  This situation, although exotic in 
the acoustic range, can be considered separately, but is 
beyond the scope of this paper. 

After temporal strobing of the signal u2(t) by the 
window wk(t) = w(t $ tk), where tk is the temporal 
window center (of duration Δ) and transition to the 
spectrum we derive the relation  

 

Sk(Ω) = 
1
2π ⌡⌠

0

∞

 h(x) dx ⌡⌠
0

∞

 e$iΩt wk(t) r(t, x) dt = 

 

= ⌡⌠
0

∞

 h(x) Sk(Ω, x) dx, (7) 

 
which describes the result of application of the 
frequency compression method.  The position of the 
strobe w(t) on the temporal axis specifies samples of 

duration Δ centered at tk = t0 + (k $ 1/2)Δ, 
k = 1, ..., n.  The strobe duration is chosen from the 
condition of the channel stationarity and its dispersive 
properties.  Although in water the material dispersion is 
practically absent, a waveguide leads to the appearance 
of the waveguide dispersion.  This in its turn leads to 
the appearance of the coherence band, that is, the 
frequency band for which the dispersive distortions can 
be ignored.  Therefore, the strobing window is chosen 
so that in the window the frequency advance does not 
exceed the coherence bandwidth.  We use this 
condition as well.  Because the total signal duration 
may be several tens of minutes, that time exceeds the 
stationarity period of the medium; therefore, the 
duration of strobe window is chosen so that the changes 
of the medium for these time intervals can be neglected.  
The spectral function Sk(Ω) of the signal fragment cut 
out by the strobe window characterizes the properties 
of the propagation channel at the time tk. 

If we proceed in Eq. (5) to the spectral function 
of the low-pass filter and to the spectrum of the 
function a(t; t, x) (for the variable t), after a number 
of standard transformations we obtain the following 
relation: 

 

r(t, x) = 
π
2 ⌡⌠

$∞

∞

 e$iωt A(ω, x) [Hf (ω + γ) eiψ+iγt + 

 

+ Hf (ω $ γ) e$iψ$iγt] dω. (8) 
 

Note that here, in accordance with Eq. (6), ϕ and γ are 
the functions of the variable x.  The function A(ω, x) 
is the Fourier transform of a(t; t0, x) over the variable 
t. 

Substituting Eq. (8) in the relation for the 
function Sk(Ω, x) determined by Eq. (7), we obtain  

 

Sk(Ω, x) = 
1
4 ⌡⌠

$∞

∞

 eitk(ω$Ω) A(ω, x) [F+(Ω $ γ, ω) + 

 

+ F$(Ω + γ, ω)] dω. (9) 
 
Here, for convenience, the designation  
 

F±(Ω ∓ γ, ω) = W(Ω $ ω ∓ γ) Hf (ω ± γ) e 
± iφ�± itkγ 

 
is used, where W(ω) is the Fourier transform of the 
function w(t) $ the temporal window. 

The main expression to analyze is Eq. (7).  
Because the impulse response h(x) has in fact the 
limited carrier, the function a(t; t0, x) differs from zero 
on sufficiently long interval of variation of t for all x 
over which the integral is taken in Eq. (7).  In this 
instance, the function A(ω, x) as the Fourier transform 
of the function a(t; t0, x) has a very narrow spectrum 
compared with the bandwidth of the low-pass filter and 
the spectral width of the strobing window.  Taking an 
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advantage of this property and taking the spectral 
functions of the temporal window w and of the low-
pass filter Hf outside the integral in Eq. (8) (assuming 
ω = 0), we obtain less cumbersome formula  

 

Sk(Ω, x) = 
1
4 a(tk, t0, x) e$itkΩ [F+(Ω $ γ) + 

 
+ F$(Ω + γ)]. (10) 
 
Here, the functions F±(Ω) are defined by the same 
relations when ω = 0.  Note that in the derivation of 
Eq. (10) we cannot neglect the dependence on ω of the 
phase factors of the integrand in Eq. (8), because due 
to the multiplier tk adjacent to ω and changing within 
the limits of the total duration of the chirp the phase 
values can be compared to π. 

The windows used in practice usually have the 
narrow bandwidth of the order of several units or 
fractions of hertz.  Moreover, F(Ω ± γ) are localized 
within the region of zero argument; therefore, in 
Eq. (10) for the function Sk(Ω, x) the first term is 
concentrated in the region of positive Ω whereas the 
second term $ in the region of negative Ω; therewith, 
the condition Sk($Ω, x) = S*

k(Ω, x) is fulfilled because 
Sk(Ω, x) is the Fourier transform of the real function.  
Let us restrict ourselves to the consideration of 
Sk(Ω, x) for positive Ω, retaining only the first term in 
Eq. (10). 

Let us proceed from the impulse response of the 
channel to the impulse transfer function in Eq. (7) by 
taking the Fourier transform for x and changing the 
integration variable x by 

 
y = Ω/β $ (x $ t0) 

 

in the interior integral.  Taking x $ t0 > 0, the 
equation for Sk(Ω) may be written as 

 
Sk(Ω) = 
 

= 

1
4 ⌡⌠

$∞

∞

 H(ω) ⌡⌠
$∞

y0

 a(tk, y) F(βy) e(iΩtk+iω(Ω/β�$y+t0)) dy dω,  

  (11) 
 

where y0 = Ω/β + t0.  The carrier F(βy) (the range of 
variation of the argument where the function differs 
significantly from zero) coincides with the spectrum 
carrier W(βy) that, as already inducted above, is 
concentrated near the zero argument.  Therewith, the 
minimum frequency Ω measured by an analyzer 
exceeds the window spectrum bandwidth.  Therefore, 
the limits of integration over y in Eq. (11) enclose 
the function carrier F(βy), that is, the integral over 
y is the direct Fourier transform, because the upper 
limit of integration can be expanded to ∞.  After the 
transformation, we obtain 

 

Sk(Ω) = 

π
2 eiϕ ⌡⌠

$∞

∞

 H(ω) B(β (tk $ y0) + ω + ω0) e$iωy0
 dω,  

  (12) 
 
where B(x) is the result of the Fourier transform of the 
integrand in Eq. (11). 

In this designations, after processing of the kth 
sample the form of Sk(Ω) is analogous to the relation 
for the communication channel response to the transfer 
of the signal with the spectrum B with the only 
difference that not only the exponent, but also the 
parameter B depends on Ω.  Therewith, the spectrum B 
differs significantly from zero in the narrow band of 
frequency ω. 

It is well known that the registration of several 
communication channel responses to the 
quasimonochromatic signal is possible for acoustic 
sounding.  This means that H(ω) can be represented as 
a sum of the impulse transfer functions Hl(ω) 
corresponding to different propagation modes.   

Let us now proceed to the calculation of the 
integral in Eq. (12), taking advantage of the 
transformations that are typically used for the impulse 
quasimonochromatic signals.  First, we change the 
variable ω by $ω and take advantage of the property of 
the impulse transfer function of the communication 
channel 

 

H($ ω) = H*(ω) = ΣH*
l(ω). 

 
Second, we reduce the conjugate transfer function to 
the spectral band B(β(tk $ y0) + ω + ω0). 

For this purpose, we expand the function H(ω) 
around the frequency 

 

ωk = ω0 + β(tk $ y0), (13) 
 
which is the center of the carrier B(β(tk $
y0) + ω + ω0).  The phase of transfer function is fast 

varying quantity, while the amplitude H*
l(ω) depends 

only weakly on ω.  Therefore, for the considered 
frequency band we restrict ourselves to the phase 
expansion retaining only the linear term.  The function 

⏐H*
l(ω)⏐ is considered constant.  As a result, we obtain 

 

Sk(Ω) = 
π
2 e$i(ψ+ωk y0) ∑

l

 H*
l(ωk) × 

 

× ⌡⌠
$∞

∞

 B(ωk $ ω) e$i(ωk$ω)(y0$τl) dω,  (14) 

 

where τl  is the group delay defined as the derivative of 
the transfer function phase Hl (ω) at the frequency ωk.  
The integral in Eq. (14) is the inverse Fourier 
transform, that is, 
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Sk(Ω) = 
π
2 ei(ψ+ωk y0) ∑

l

 H*
l (ωk) b(Ω/β + t0 $ tl). (15) 

 
Here, b(x) = a(tk, x)F(βx). 

It is evident from Eq. (15) that at the analyzer 
output the signals are recorded that correspond to the 
propagation modes for sounding by a 
quasimonochromatic pulse with the complex envelope 
b(Ω/β).  Thus neglecting dispersive distortion, the 
signal waveform is determined only by the form of the 
spectrum analyzer window w(t) and the transmission 
coefficient of the low-pass filter.  The lth signal center 
position on the axis Ω is determined from the condition 
y0 = τl and corresponds to the frequency 

 
Ωl = β (τl $ t0). (16) 
 

Equation (16) establishes the relation between the 
recorded signal delay of the lth mode and the analyzer 
variable Ω and permits us to match the range of 
variations of the signal group delays to the working 
range of the analyzer by the corresponding choice of t0. 
In addition, our analysis shows that the recorded 
spectrum maxima are related with the channel  
group delays only when the condition  
2πFw < β(τl $ t0) < 2π Ff is satisfied rather than for 
arbitrary delays, where Fw is the strobe window 
bandwidth and Ff is the low-pass filter bandwidth. 

The subscript k in Eq. (13) defines the current 
frequency ωk for which the lth mode chirp 
characteristics are calculated.  The difference from the 
pulsed sounding consists in the fact that during the 
individual kth sample analysis time, ωk changes by the 
working spectrum bandwidth ΔΩ.  The parameter ΔΩ 
usually can be neglected in comparison with ωk.. 
Therefore, for every l the signal characteristics are for 
the frequency ωk = ω0 + βtk.  If required, for each  
 

mode with the delay τl we can determine the carrying  
frequency from Eqs. (16) and (13).  Changing k from 1 
to N corresponds to the chirp frequency variation over 
the entire sounding band. 

Thus, Sk(Ω) describes the dependence of the signal 
level on the delay τl and carrying frequency ωk.  The 
registration of the modulus Sk(Ω) is the result of 
application of the considered sounding method.  The 
dependence Sk(Ω) (on τl) at the moment tk is the 
signal waveform at the current frequency ωk. 

As a result, we can draw the following 
conclusions: 

1) The result of processing of an individual sample 
of received signal is formally similar to channel 
sounding with a narrow-band pulse signal, the 
characteristics of which are determined by the temporal 
window used to select the samples.  The group delays 
of the effective pulse signal b determine the recorded 
spectrum maxima. 

2) The proposed method for processing permits one 
to model the waveform and recording spectrum phase 
structure in case of sounding of a real medium with a 
broadband chirp by the frequency compression method. 

3) If necessary, the considered method permits one 
to take into account the channel dispersive distortions, 
in particular, arising from the dispersion of absorption, 
which results in waveform distortion as well.3 
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