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Mathematical techniques is developed for modeling diffraction patterns at the 
output of a defocused optical system with an axicone.  We have derived quite a 
simple equation for field of a disturbed (defocused) system by solving 
corresponding equations for a nondisturbed system.  Comparison of the solution 
obtained with the analytical solutions obtained earlier for the same problem is 
performed for two input actions, i.e., a plane wave and a Gaussian beam. 

 
1. It is a characteristic property of diffraction 

fields at the output of a properly focused optical system 
œaxicone-lensB or in the far zone (Fraunhofer zone) of a 
lensless axicone system under the action of a collimated 
laser radiation is their localization in a narrow ring 
zone of the formed beam periphery.  This salient feature 
of the fields formed with a focused axicone system 
attracted much interest in them and their applications 
in various technologies, from laser engineering1$3 to 
space communication.4  The structure of ring diffraction 
patterns were considered in several papers5$9; thermal 
effects of their action on substances were studied in 
Ref. 10.  The patterns with a blurred ring structure 
formed by a defocused (poorly focused) axicone system 
are studied much less.  This is the subject of studies 
presented this paper.  We call these fields œdisturbedB, 
in contrast to œundisturbedB fields formed by a focused 
system. 

The models of undisturbed fields are constructed 
on the basis of Fourier optics equation11 relating the 
complex amplitudes of an axial symmetric field at the 
input ψ1(r′) and at the output ψ(r) of an axicone 
system in the paraxial approximation of the Kirchhoff 
scalar diffraction theory 
 

ψ(r) = 
k

z
 ⌡⌠

0

R

 
 
ψ1(r′) exp (i ω0 r′) I0(ωr′) r′ dr′, 

ω = kr/z ,  (1) 
 
Here exp(iω0r′) is the transmission function of the 
axicone which is a linear spatial modulator of the wave 
phase; 
 
ω0 = kφ = kr0/z  (2) 
 
is the parameter expressed by the wave number 
k = 2π/λ and the angle φ of a beam deflection by the 
axicone; r0 = φz is the radius of the median line of the 
illumination ring of the output plane of the system; 
I0(⋅) is the zero order B essel function of the first kind; 

R is the aperture of the axicone.  B y setting z = f, 
where f is the focal length, we will consider the focal 
plane of the lens to be the output plane of the 
œaxicone-lensB system.  For a focused lensless system, 
the output plane is the cross section of the beam in the 
Fraunhofer zone at a distance z from the axicone.  
Here, the focusing system is a spatial layer of a 
sufficiently large extension.  Mathematically, both 
situations are similar and both are described by an 
equation of the same type (1) with the only difference 
that the value z corresponding to the Fraunhofer zone 
of the system considerably exceeds the focal length f of 
all the lenses that are met in practice. 

The equation (1) and models of the ring 
diffraction pattern that follow from it have been 
studied quite thoroughly.  Much less attention was paid 
to the equation 
 

ψ(r) = 

k

z
 ⌡⌠
0

R

 
 
ψ1(r′) exp(iδr′2) exp(iω0r′) I0(ωr′)r′dr′, (3) 

 

describing the same system in a more general case of a 
weakly focused state that differs from Eq. (1) by the 
presence of an additional phase term exp(iδr′2). The 
latter by analogy with the above-mentioned definition 
of the axicone can be called the square-law spatial 
modulator of the wave phase.  If the field ψ(r) is 
considered at a point near the focal plane of the system, 
the parameter δ can be defined as 
 

δ = 
k

z
 ⎝
⎛

⎠
⎞1

z
 $ 

1
f

 ≈ 
k(f $ z)

2f2
 .  (4a) 

 

For a lensless system and large z, the parameter δ 
in Eq. (3) may be written, in the Fresnel 
approximation, as 

 

δ = k/2z .  (4b) 
 

The defocusing term exp(iδr′2) in Eq. (3) can be 
neglected only at δr′2 << 1 that does not always takes 
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place in practice.  For instance, this condition is not 
satisfied in many laser engineering applications, when a 
beam formed by an axicone system as a ring 
concentrator of radiation energy is used for welding or 
drilling materials of a finite thickness.1  This condition 
can also be broken in other applications, in particular, 
during the operation of a laser beacon with a tubular 
searchlight beam,4 when the object is not very far from 
the beacon.  In all these cases, the factor exp(iδr′2) 
must be taken into account in Eq. (3).  B ut it 
complicates the calculations very much. 

2. Let us call Eq. (3) the equation of a weakly 
focused optical system with an axicone.  Usual 
approach6 to analysis of this equation is to expand the 
disturbing exponential factor exp(iδr′2) into a power 
series and replace Eq. (3) by a more cumbersome 
equation 
 

ψ(r) = 
k

z
 ∑
m = 0

∞

  
(iδ)m

m!
 × 

× ⌡⌠
0

R

 
 
ψ1(r′) exp (i ω0 r′) I0(ωr′) (r′)2m + 1 dr′,  (5) 

 
which is, however, simpler in structure of the terms 
entering into it.  In two particular cases, namely, for a 
plane wave and a Gaussian beam at the system input, 
the integral can be represented analytically based on 
the theorem of series expansion over B essel functions12 
 

I0(λt) = ∑
n = 0

∞

  
(1 $ λ2)n

n!
 (t/2)n In(t)  (6) 

 

and using the formula12 
 

Gm,n(x) = 
x2(m + n + 1)

2(m + n + 1) 2n n!
 × 

× 2F2 ⎝
⎛

⎠
⎞

⎪
⎪n + 1/2, 2m + 2n + 2

2n + 1, 2m + 2n + 3
 2ix  ,  (7) 

 
that expresses the Luke integral 
 

Gm,n =
Δ ⌡⌠

0

x

 
 
exp(it) In(t) t2m + n + 1 dt  (8) 

 

in terms of generalized hypergeometric function 
 

2F2 ⎝
⎛

⎠
⎞

⎪
⎪n + 1/2, 2m + 2n + 2

2n + 1, 2m + 2n + 3
 2ix  = 

= ∑
k = 0

∞

  
(n + 1/2)k (2m + 2n + 2)k
(2n + 1)k (2m + 2n + 3)k

 (2ix) k, 

 

(α)k =
Δ
 Γ(α + k)/Γ(α) = α(α + 1) ... (α + k + 1) . 

 

The solutions are double series over these functions 

with the value x = ω0R, m and n being the summation 

indices.  The values (i~δ)mρn/m!, where 
 

ρ = (ka/z) (r $ r0) ,  (9) 
 

is the dimensionless, normalized, and displaced by r0 
radial variable r, serve as coefficients at terms of the 
series.  B y a we denote here some characteristic size 
coinciding with the aperture radius R for the case of a 
plane wave and with the cross size W/2 for a Gaussian 

beam of the type ψ1(r′) = I0exp($r′2/W2).  The 

parameter i
~
δ is a dimensionless quantity and for the 

case of a plane wave, it coincides with iδR2 while for a 
Gaussian beam it equals to (iδ $ 1/W2)R2. 

In an asymptotic approximation relative to the 
parameter x whose values exceed unity by 2$3 orders of 
magnitude, in all practical cases, the hypergeometric 
functions are simpler and double series contract, and 
the solution can be reduced to the form 
 

ψ(r) = 

= A ∑
n = 0

∞

 
($iδR2)n

n!
 

3
3 + 4n

 1F1(2n + 3/2, 2n + 5/2; iρ), 

(10) 

A = I0 
4 R3

9 zr0 λ
 

 

for a plane wave and 
 

ψ(r) = 
∼
B 
⎣
⎡
1F1(3/4,

 

 
1/2;$∼ρ2) $ 

⎦
⎤$ 2i∼ρ 

Γ(5/4)
Γ(3/4)

 1F1(5/4, 3/2;$∼ρ2)  ,  (11) 

∼
B = B/(1 + iδW2)3/4,    ∼ρ = ρ/(1 + iδW2)1/2 
 

for a Gaussian beam.  B y 1F1(a, b; z), we denote 
confluent Kummer functions. 

3. Analysis of equation (3) is based on the transform 
of Eq. (3) to the form (5) and uses Eqs. (6) and (7) and 
summation of the series over the generalized 
hypergeometric functions.6  It is quite rigorous but very 
cumbersome and too œspecializedB.  It is applicable only 
to two particular cases of input action upon the system 
considered.  B elow, we present a more general approach 
which enables one to obtain, and relatively simply, a 
solution of the œdisturbedB problem (3) using the 
solution of the corresponding "undisturbed" problem (1).  
The solution of the latter can easily be obtained for a 
wide class of axial symmetric input actions described by 
smooth functions of the radial coordinate, if not 
analytically, then by numerical or semianalytical methods 
(see, for instance, Ref. 4).  As applied to the particular 
cases of a plane wave and a Gaussian beam considered 
above, the proposed approach yields the results coinciding 
with Eqs. (10) and (11). 
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4. Let us consider the equations (1) and (3) as 
Fourier transforms with respect to frequency ω0 of the 
corresponding integrands.  The possibility of making 
such a representation follows from the very form of 
these equations.  Then the function defined by the 
disturbed equation (3) (let us denote it by 
ψd(r) ≡ ψd(ω0)) can be described by the convolution 
integral over the frequency region 
 

ψd(r) = ψ(ω0) ∗ f(ω0) = ⌡⌠
$∞

∞

 
 ∼
f(τ) ψ(ω0 $ τ) dτ .  (12) 

 

Here ψ(ω0) ≡ ψ(r) is the solution of the undisturbed 
problem (1) and 
 
∼
f(ω0) = Fω0

 {exp (iδr′2)} = π/iδ exp ($i ω2
0/4δ) 

 
is the Fourier transform of the disturbation term 
exp(iδr′2).  The latter equality may be derived from the 
obvious transformations 

 

Fω0
 {exp (iδr′2)} =

Δ ⌡⌠
$∞

∞

 
 exp (iδr′2) exp (iω0 r′) dr′ = 

= exp ($i ω2
0/4δ) ⌡⌠

$∞

∞

 
 exp (iδx2) dx = 

= iπ/δ exp ($i ω2
0/4δ) . 

 
B y expanding ψ0(ω0 $ τ) into the Taylor series 

over τ (here, in contrast to Ref. 6, we expand not the 
disturbing function exp(iδr′2), but the solution of the 
undisturbed problem (1) convoluted with its Fourier 
transform) and performing term by term integration in 
Eq. (12), we obtain 

 

ψd(r) = (2π)$1 ∑
p = 0

∞

 ($i)p 
 mp

p!
 
dpψ(ω0) 

dω0
p  .  (13) 

 
The coefficients of the series are the moments of the 

function 
~
f(ω0) 

 

mp = ⌡⌠
$∞

∞

 
 
τp 

∼
f(τ) dτ ,    p = 0, 1, 2, ... , 

 
that may simply be expressed by the defocusing factor 
δ.  Using well-known formulas for mp 

13 and taking 
into account the identity 
 
(2n $ 1)!! 2n = (2n)! / n! 
 
we obtain 

 

mp = 
⎩
⎨
⎧2π 

p!
(p/2)!

 (iδ)p/2 ,  if p is even

0, if p is odd .
 

 
Substitution of these formulas into Eq. (13) yields  
a relatively simple solution to the problem that presents 
the function ψd(r) disturbed by the defocusing term 
exp(iδr′2) in terms of undisturbed function 
ψ(r) ≡ ψ(ω0) and its derivatives: 

 

ψd(r) = ∑
n = 0

∞

 
($iδ)n

n!
 
d2nψ(ω0) 

dω0
2n  .  (14) 

 
The equality 
 
d2nψ(ω0) 

dω0
2n  exp (i ω0 r′) = ($ r′2)n exp (i ω0 r′) 

 
obviously implies the equivalence of the expressions (3) 
and (12) for the cases when ψ(ω0) ≡ ψ(r) exactly 
corresponds to the equation (1). 

5. If ψ(r) is represented by Kummer functions, the 
expression (12) may be written in a different form with 
the allowance for the well-known identity12 
 
dp

dzp
 1F1(a, b; z) = 

(a)p
(b)p

 1F1(a + p, b + p; z) . 

 
For instance, if we have a plane wave at the input 

(R1 = 0), the expression (14) and the equality 
 
d2

dω0
2 = R2 

d2

dρ2 

 
yield 
 

ψ(r) = A ∑
n = 0

∞

  
($iδR2

2)
n

n!
 × 

× 
3

3 + 4n
 1F1(2n + 3/2, 2n + 5/2; iρ) , 

(15) 
ρ = R(ω $ ω0) , 

 
what coincides with Eq. (10). 

In the case of a Gaussian beam, ψ(r) may be 
written in terms of the function up(z) = exp(z2/4)Dp 

(p = $3/2, z = $i 2ρ, ρ = (W/2)(ω $ ω0)) satisfying 
the equalities 

 

 d2up

dω0
2  = $ 

W2

2
 
 d2up

dz2  , 

(16) 

 d2up

dz2  = 
W2

2
 (pup $ ρdup/dρ) . 
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The first equality follows from the definition, while the 
second one can easily be derived from the classic 
differential equation for the parabolic cylinder 
functions12: 

 
d2

dz2  Dp + (p + 1/2 $ z2/4) Dp = 0 . 

 
Taking into account Eq. (16), we obtain, from 
Eq. (14), the following expression for the case of a 
Gaussian beam at the input of the system in the first 
order approximation relative to the small parameter δ: 
 

ψ(r) = 2$3/4 Γ(3/2) 
∼
B u$3/2($ i 2 ∼ρ) =  

= 
∼
B 
⎣
⎡
1F1(3/4,

 

 
1/2;$∼ρ2) $ 

⎦
⎤$ 2i∼ρ 

Γ(5/4)
Γ(3/4)

 1F1(5/4, 3/2;$∼ρ2)  ,  (17) 

 
where 
 
∼
B ≈ B[1 $ i(3/4)δW2] ,    ∼ρ = ρ(1 $ iδW2/2) . 

 
This agrees with Eq. (11) for small δ.  When deriving 
Eq. (17), we used the following relationship: 
 

ψ(ρ) $ i(δW2/2) ρ 
dψ(ρ)

dρ
 ≈ ψ(ρ) . 

 

6. Consideration of the optical system with an 
axicone in a spatial frequency region (with respect to 
the parameter ω0) leads to the equation (14) that 
models the diffraction patterns ψd(r) at the output of a 
disturbed (weakly focused) system (3) in the 
approximation that enables one to obtain the solution 
of the corresponding undisturbed problem (1) ψ(r) 
entering into Eq. (14).  The existing methods (see, for 
instance, Ref. 4) allow one to calculate the latter for 
any form of the input action with the accuracy 
sufficient for all technological applications; the fields 
at the output of a weakly focused system are described 
by equation (14) with the same accuracy if the 
obtained solution ψ(r) is substituted into it.  This 
conclusion is verified by comparing corollaries of the 
Eq. (14) with the analytical results obtained earlier for 
two particular cases, i.e., a plane wave and a Gaussian 
beam at the input of the system. 

The solution (14) is represented as a series.  The 
series converges rapidly at a slightly defocused system 
(and this is just the case that is interesting for practical 
use of ring diffraction patterns formed with such a 
system).  So it is sufficient to use only two or three 
first terms of the series. 

 
APPENDIX 

 
The equation (3) can be considered as a Fourier 

transform of the product of two summable (Lebesgue 

integrable) functions f ∈ L1 and g ∈ L1 from the x-
plane to the ω0-plane 
 

ψd(ω0) = ⌡⌠
$∞

∞

 
 
f(x) g(x) exp (iω0x) dx , 

 
One of the functions, namely, 
 

f(x) = 
k

z
 ψ1(x) I0(ωx) [U(x $ R) $ U(x)] , 

 
is a finite function.  Here U(⋅) is the Heaviside 
function.  One can apply the convolution theorem to 
the functions (more generally, to all distributions with 
a bounded support or tempered distributions15) 
 
F [f g] = F [f] ∗ F [g] . 
 

In our case, ψd(ω0) and F [f] are output functions 
of the disturbed (3) and undisturbed (1) equations.  It 
is just this fact that validates formula (12). 
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