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We present here an equation derived in the geometric optics 
approximation that describes the evolution of ultrashort pulses in an absorbing 
medium.  This is the Burgers–Korteweg–de Vries (BKV) equation where the 
amplitude of the Poynting vector is taken as the unknown function.  We have 
numerically simulated the evolution of picosecond pulses in a quartz optical 
wave guide where  no absorption is present (the Korteweg–de Vries 
equation).  During their evolution picosecond pulses are decomposed into 
femtosecond solitons (≈ 200 fs).  Duration of the solitons is inversely 
proportional to the soliton amplitude to the  power of 1/2.  In the case when 
no dispersion is present the width of the arising shock wave is proportional to 
the absorption coefficient and to the electromagnetic wave period, and 
inversely proportional to the radiation intensity.  At the intensity of 100–

1000 W/cm2, the width of the shock wave front equals 100–1000 periods of 
the electromagnetic radiation wave. 

 

Development of some new leads in non-linear 
wave theory is stimulated by the present-day high level 
of investigations into the ultrashort light pulses 
(USLP) by the methods of non-linear optics.  Theory 
of optical solitons and soliton lasers, generalization of 
the method of slow varying amplitudes to problems of 
femtosecond non-linear optics, search for new 
mathematical models of non-linear processes, as well as 
the development of mathematical techniques for solving 
problems of laser radiation self-action in a non-linear 
dispersive medium are the tasks of current concern. 

The progress in experiments on the USLP 
formation in a non-linear dispersive medium has 
stimulated studies in the theory of non-linear wave 
equations.  An overview of such studies may be found, 
for instance, in Refs. 1–4.  In the first approximation, 
the propagation of short pulses is described by non-
linear equation (NSE). In the quasi-optics 
approximation, the process can be described by the 
system of equations for the amplitude and phase of the 
field (Ref. 4, p. 470).  Similar approach (the Poynting 
vector is more convenient for use in the vector-form 
approach) was used in Ref. 2,  where the Korteweg–
de Vries equation (KdV) was obtained for the 
amplitude of the Poynting vector from the vector wave 
equations for the electric E and magnetic H fields in 
the case of a non-linear absorption-free dispersive 
medium.  In this paper we present similar equation 
derived for the absorbing medium.  The equation is the 
Burgers–Korteweg–de Vries equation (BKV). Based 
on KdV, we simulate propagation of ultrashort pulses 
in an optical wave guide. 

From the Maxwell equations for a non-
absorbing dispersive medium, it is easy to obtain2 
wave equations in a vector form 
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where k = nω/c; ω =2π/λ, λ is the light wavelength 
in vacuum; Ψ is the wave phase; Å = Å0 exp(–
iωt + iΨ); H = H0 exp(–iωt + iΨ), Å0 and Í0 are 
the amplitudes of the electric and magnetic fields 
slowly varying on the wavelength scale; n is the 
refractive index of the medium. 

When deriving the BKV, let us first neglect the 
summands ∼ ∂3(k2)/∂ω3 in Eq. (1).  In the case of an 
absorbing medium, Å and Í also satisfy Eq. (1), but 
the refractive index is a complex number 
n = n′ + in″.  In view of all the above reasonings, the 
first equation in Eq. (1) can be written as follows: 
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where k = k′ + ik′′; k′ = n′ω/c; k′′ = n′′ω/c. 
As seen from Eqs. (2) and (3), the solutions E0 

and H0, as a first approximation, can be represented 
in the form 
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Taking into account Eq. (4), the expression in 
the second square brackets of Eq. (2) can be written 
in the form 
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where δ(k′)2 is the correction to the square of the 
wave number (k′)2 whose value will be determined 

below; in deriving Eq. (5), we suppose that ω 
∂k′
∂ω = k′. 

In Eq. (2), let us equate the terms containing 
real and complex coefficients to zero.  Taking into 
account Eq. (5), we obtain 

 

äE0

äs  + 
1

2k′ 
ä(k′)2

äω  
äE0

ät  + 
ωn′′
c  E0 – 

n′′
ωc 

ä2
E0

ät2  = 0 ,  (6) 

 

E0δ(k′)
2 = – k′

ä2k′
äω2 

ä2
E0

ät2  – 2k′ 
n′′
c  

äE0

ät  , 

 

where the summands ∼(n″)2 in Eq. (6) are omitted. 

Similar calculations for Eq. (3) yield the system 
of equations for H0 
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The equations (6) and (7) are obtained from 
Eqs. (2) and (3) as the first approximation which 
supposes that the wave number k′ is determined only 
by the medium parameters.  The solution E0, in the 
form of the equality (4), makes it possible to 
determine the correction to the value δ(k′)2. This 
means that, in the second approximation, the wave 
number k′ depends both on the medium parameters 
and on the profile of the initial signal.  According to 
the perturbation theory, the expression 
∂[(k′)2 + δ(k′)2]

∂ω  should be replaced by 
∂(k′)2

∂ω  in the 

second equation of the system (6) (the correction to 
other terms is small).  Taking into account the above 
said, it follows from Eqs. (6) and (7) that 
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where Eq. (8) is derived under the assumption that  
 

∂k′
∂ω = 
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ω . 

Similar calculations for H0 with the allowance 
for the last summands in Eq. (1) yield the equation 
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where S is the Poynting vector: 
 

S = 
c

16π [E0 × H*
0 + complex conjugated] . 

 

When deriving the Eq. (9) we took into account that 
the inequality 
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holds in an optical wave guide. 
Now, let us take into account the nonlinear 

contribution to the vector of electric induction 
(Ref. 7, p. 517): 
 
D = εE + αSE .  (10) 
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It is easy to show5 that Eq. (9) has an 
additional nonlinear summand in this case.  Thus we 
obtain the BKV equation 
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where the following designations are introduced: 
 

s∼ = s, t
∼

 = t – 
∂k′
∂ω s. 

 

If n″ = 0, the BKV equation (11) reduces to 
KdV.  In this case, there exists a stationary (soliton) 
solution of the equation 
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where i = – 
∂3k′
∂ω3 ; S1 is the soliton amplitude. 

As seen from Eq. (12), the velocity of radiation 
propagation satisfies the equality 
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where v0 is the group velocity of radiation.  
Correspondingly, the characteristic length of soliton 
equals 
 

Δs = v0 [4c
2k′i/ (ωμαS1)]

1/2.  (14) 
 

The soliton has certain energy, velocity, and it 
behaves as a particle.  If the power and the length of 
an input signal exceeds those of a soliton, the initial 
signal, as shown below, is decomposed into separate 
solitons. 

For n ≠ 0, as follows from Eq.(12), the 
amplitude of a Poynting vector falls off as an 
exponent 
 

S = S1 exp(– (2ωn′′/c) s∼) .  (15) 
 

If the last summand of Eq. (11) is neglected, 
then, with the allowance for Eq. (13) up to ∼n′′, we 
obtain the non-linear Burgers equation 
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The equation (16) with the boundary conditions 

S1(0, s∼) = A, S1(t0, s
∼

) = 0 has a stationary soluton8 
which is a shock wave with the width of the leading 
edge 
 

Δt
∼

 ∼ n′′ / (ωαA) .  (17) 
 

Let us estimate the width of the leading edge of 
the shock wave Δt in pure water.  For water,9 at the 
wavelength λ = 546 nm we have n″ ≈ 6⋅10–9, α ≈ 
≈ 10–16 cm2/W. At the intensity S = 100–
1000 W/cm2, we have Δt ≈ (103–104)T, where T is 

the period of the electromagnetic wave.  Let for 
nitrogen9 the value n″ be equal n″ = 10–11 and 
α ≈ 10–20 cm2/W at the same wavelength.  Then, for 
S = 1 W/cm2, we obtain Δt ≈ 109T.  These results 
show that, in some cases, the width of the leading 
edge of the shock wave is comparable with the length 
of the emitted signal what, in its turn, can distort 
the  received signal. 

In this paper, we simulate propagation of 
ultrashort pulses in an optical wave guide on the 
basis of the Korteweg–de Vries equation (n″ = 0 in 
Eq. (9)). Let μ = 1, ε1/2 = n0 = 1.5, n″ = 0 in 
Eq. (9), all other medium and radiation parameters 
being taken from Ref. 3. In this case, assuming that 
the efficient section of a one-mode optical wave guide 
equals ∼10 μm2, we obtain n2S0 ≈ 3⋅10–6 for 
δn = n2S0, n2 = a/(2n0) = 3.2⋅10–16

 cm2/W, 
S0 = 1.1⋅1010 W/cm2.  Assuming that t0 = 200 fs, we 
obtain Ld = τ2

0/k″ ≈ 30 m for the dispersive length. 

Here we take⏐k″⏐ = 
= 1.4⋅10–29

 s2/cm (see Ref. 1, p. 20), 
k″ = ∂2k/∂ω2 < 0 for quartz glass. 

By introducing new variables 
 
ζ = s/Ld ,    η = ~t /(1.75τ0) ,    S = uS0  (18) 
 
we write Eq. (11) for n″ = 0 in the form 
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where we take into account that, according to Ref. 1, 

k″′k >> k″k′, 
∂3k2

∂ω3  ≈ 2kk″′, ⏐k″′⏐ = 0.9⋅10–42 s3/cm,  

k″′ = 
∂3k
∂ω3 < 0. 

In numerical simulation, the input signal was 
 
u(ζ= 0,η) = exp { – [(η – 15)/a]2} ,  (20) 
 
where a equals 2.5 and 5.  In the case when a = 5, 
the pulse duration Δη ≈ 10 or, in correspondence with 
Eq. (18), Δt = 1.75Δητ0 = 3.5 fs what is 
approximately 8–9 times less than that in Ref. 6.  In 
both cases, the signal was translated to ζmax = 30 
(this corresponds to the optical wave guide length 
s ≈ 900 m).  Figure 1 presents the value u as a 
function of η for a = 5 when ζ = 5 and 8.  As seen 
from the figure, first, a shock wave of the envelope is 
formed from the pulse (20).  Then the generation of 
ultrashort pulses begins for 5 ≤ ζ ≤ 8 (ζ = s/Ld, 
Ld = 30 m).  It should be noted that, for the pulse 
considered (τ0 = 3 ps), the nonlinear length 
 

Lnl = τ0[n0/(k2k0n2S0)]
1/2 ≈ 25 m, 

 
i.e., Ld ≈ Lnl.  If the process of radiation propagation is 
described by NSE,4 the dispersion pulse blurring must 
be exactly compensated for by the contraction, i.e., the 
pulse must keep its shape (a soliton is formed). 
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Even at ζ = 8 (an optical wave guide of that 
length was used in the experiment6), there appeared 
already four solitons.  Figure 2 presents the value u as 
a function of η for ζ = 30 (a = 5).  As seen from the 
figure, 15 solitons appear in this case. 

Figures 3 and 4 present the value u as a function 
of η for the signal (20) when ζ = 0, 2, 8, and 30 
 

(a = 2.5).  As seen from Figs. 1 and 3, the front self-
steeping occurs more rapidly at a = 2.5 as compared to 
that at a = 5.  Generation of ultrashort pulses begins 
at 2 ≤ ζ ≤ 8.  From Figure 4 one may see that at ζ = 30 
the tenth soliton appears.  In contrast to the case of 
a = 5 mm, the energy of the input signal is completely 
redistributed among the solitons. 

 

 
 

FIG. 1.  Amplitude of the Poynting vector S as a function of η (a = 5).  The dashed line corresponds to 
ζ = 0, the labels 9 and * correspond to ζ = 5 and ζ = 8. 

 

 
 

FIG. 2.  Amplitude of the Poynting vector S as a function of η (a = 5): ζ = 0 (dashed line); ζ = 30  
(solid line). 

 
FIG. 3. Amplitude of the Poynting vector S as a function of η (a = 2.5): ζ = 0 (dashed line); ζ = 8 (9); 
ζ = 2 (*). 
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FIG. 4.  Amplitude of the Poynting vector S as a 
function of η (a = 2.5): ζ = 0 (dashed line); ζ = 30 
(solid line). 

 
This regularity can be explained by the fact that 

the steeping process of the trailing edge occurs more 
rapidly for a shorter input pulse (see Fig. 1).  Now 
let us consider the spectral radiation.  Let us assume 
that the amplitude of the electric (or magnetic) field 
approximately corresponds to the S profile, provided 
that ζ is the same.  Then, for the signal (20) (ζ = 0), 
the spectral width of the signal is equal to 
Δω1 ≈ 2/(7τ0).  For ζ = 30, let us approximate S by a 
product of the exponent and some periodic function 
 

S ∼ exp(–λ2τ) f(λ1τ) , 
 

where f(λ1, τ + πn) = f(λ1τ), n = 0, 1, 2, 3,... . 
As follows from Fig. 2, λ2 ≈ 0.0057/τ0 and 

λ1 ≈ π/τ0.  Finally, it follows that the spectral width 
of the pulse (20) equals Δω2 ≈ π/τ0 for ζ = 30, i.e., if 
ζ = 30, the spectrum broadens  10 times as compared 
with the initial one. 

 
 
 

Thus, the results presented in this paper show 
that in a single-mode optical wave guide picosecond 
pulses are decomposed into subpicosecond (≈ 200 fs) 
ones at the distance of 2–8 dispersion lengths (60–
240 m). 

The pulse energy and duration are proportional 
to (u0S0)

1/2 and (u0S0)
–1/2, respectively.  The 

velocity of a soliton depends on its peak value in the 
accompanying coordinate system.  For a peak value 
of the soliton, ≈ 1800 W, its energy is ≈ 2.5⋅10–10 J, 
the characteristic duration being about 160 fs. 
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