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A new algorithm of segmentation of multispectral videodata using cluster 

analysis has been proposed.  A problem of recognition of transient fragments of 

videodata is solved to eliminate in the first stage "mixed" pixels from the tutorial 

algorithm thereby increasing the quality of recognition of the selected classes.  An 

example of recognition of cloud fields in images recorded with the AVHRR of a 

NOAA satellite demonstrates algorithmic implementation. 
 

One of the initial stages of image interpretation is 
segmentation, i.e., recognition of homogeneous (in a 
sense, for example, in intensity) fragments.  It should 
be noted that images with vast homogeneous fragments 
and clearly defined sharp boundaries are few and far 
between.  One can most frequently see fragments 
representing transient zones from one class to another.  
In this case, conventional segmentation methods of 
clusterization of a complete sample are inefficient, 
because the number of sample elements, which belong 
to the transient fragments between classes, is larger 
than the number of elements which represent a pure 
class. 

In this case, it is necessary to recognize sample 
elements belonging to individual classes.  It would be 
reasonable to proceed from the following assumptions: 

1. A pure class is represented by the parameter 
vector X0. 

2. There is a small zone ε in the image plane in 
which the parameter vector is almost constant and can 
be represented as 
 

X
ε
 = X0 + ξ , 

 

where X
ε
 is the parameter vector in a certain zone ε, X0 

is the vector typical of its class, and ξ is the random 
variable with uncorrelated components that obey 
analogous distributions. 

For this model the homogeneity of the given 
fragment of videodata ε is checked by the agreement 
between the distributions and uncorrelated components 
of the vector ξ. With this aim, we sample {X

εi}, 

i = 1...n from the given test fragment ε and estimate 
the expectation and covariance matrix for the  
sample {X

εi}: 
 

X̂0 = 
1
n
 ∑
i = 1

n

 X
εi ,  (1) 

C = 
1
n
 ∑
i = 1

n

 (X
εi $ X̂0) (Xεi $ X̂0)t. 

 
As known, the covariance matrix can be 

represented as the following singular expansion: 
 
C = U Λ Ut,  (2) 
 
where Λ is the diagonal matrix of eigenvalues, U is the 
matrix of eigenvectors. 

To test the agreement between distributions of 
components of the vector ξ, we calculate the 
projections of centered vectors of the sample {X

εi} on 

the eigenvectors of covariance matrix.  Because the 
sample vector components can be different in nature, 
we normalize them to the corresponding variances, that 
is, to the diagonal elements of matrix C, to scale all 
quantities. 

Let uj and uk be the jth and kth vectors of matrix 
U, and C1 be the diagonal matrix comprising the square 
roots of diagonal elements of matrix C 
 

C1 = diag C. 
 
Then the normalized projections of the ith vector of the 
sample on the jth and kth vectors of matrix U have the 
following forms: 
 

ηij = ut
j C

$1
1  (Xi $ X̂0) , 

  (3) 

ηik = ut
k C

$1
1  (Xi $ X̂0) . 

 
We check samples {ηij} and {ηik} for the 

homogeneity with the use of the Kolmogorov-Smirnov 
test.  With this aim, we construct empirical 
distribution functions F(ηij) and G(ηij) for the  
 



Yu.V. Gridnev Vol. 11,  No. 4 /April  1998/ Atmos. Oceanic Opt.    375 
 

 
 a b 

FIG. 1. 

 
 a b 

FIG. 2. 
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FIG. 3. 
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ordered samples {ηij} and {ηik} and calculate the 
statistic: 
 

Di = sup
{j, k}

 |G(ηij) $ F(ηik)| ,  (4) 

 

which for homogeneous distributions does not exceed a 
preset value.  The critical values D are tabulated 
(Ref. 1). 

The special test for uncorrelated components of 
vector ξ is not required, because in case of dependent 
vectors of the initial sample the normalization to the 
diagonal elements of covariance matrix C leads to the 
disagreement between the distributions of the 
components of vector ξ. 

We obtain the sample {X0i}, i = 1...N, where N is 
the number of identified fragments  after the 
recognition of homogeneous fragments in the sense of 
the above-described model.  At the first stage of 
algorithmic implementation the number N is large, that 
is why subsequent merging of the obtained subclasses is 
necessary.  Because each class can be represented by 
several vectors, in the second stage it is necessary to 
cluster the obtained samples before their classification.  
To this end, we define a pair of vectors for which the 
distance 

 

d = min
{j, k}

 ( )(X0i $ X0j)t (X0i $ X0j)   (5) 

 
is minimum and replace them by a new vector 

X′0k = 
ni

ni + nj
 X0i + 

nj
ni + nj

 X0j , 
 

nk = ni + nj . 
 
Then we calculate the weight nk of new vector.  We 
repeat this procedure until the number of sample 
vectors exceeds the given sought-after number of 
classes. 

The segmentation of the entire data set is finished 
when each vector is classed with the centers of the 
corresponding classes by the nearest-neighbor method of 
the Euclidean metric. 

A fragment of five-spectral image of the Earth's 
surface 1024×1024 pixels shown in Fig. 1 (where a and 
b correspond to channels 1 and 3) illustrates the 
algorithmic implementation. 

The result of recognition of homogeneous 
fragments is displayed in Fig. 2 where crosses indicate 
the fragments identified by the algorithm (only the 
right upper fragment of the initial image is shown).  
The entire fragment was classified after grouping of the 
obtained vectors in five classes.  The results of 
classification are shown in Fig. 3, from which one can 
see that segmentation of the clouds, which are 
countered in the figure, is fairly reliable. 
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