
Yu.N. Isaev and E.V. Zakharova Vol. 11,  No. 5 /May  1998/ Atmos. Oceanic Opt.  
 

0235-6880/98/05  393-04  $02.00  © 1998 Institute of Atmospheric Optics 
 

393

`SYNTHESIS OF THE OPTIMAL BASIS TO RECONSTRUCT RANDOM WAVE 

FIELDS 

 

Yu.N. Isaev and E.V. Zakharova 

 

Institute of Atmospheric Optics,  

Siberian Branch of the Russian Academy of Sciences, Tomsk 

Received November 18, 1997  

 

We present algorithms for calculating the transformation matrixes that relate 

the coefficients of the optimal Karhunen-Loeve-Obukhov basis to those of the 

Walsh and Haar bases in the series expansions of the optical wave phase. In so 

doing, we have made numerical simulations for Kolmogorov spectrum of turbulence 

and round receiving aperture.  Analysis of the numerical results shows that the 

algorithms developed allow the transformation matrixes to be calculated with the 

accuracy that could suit the control of the wave fronts. 

 
In the turbulent atmosphere we normally observe 

distortions of optical radiation propagated through it 
because of the random optical properties of the 
medium.  To study such random wave fields the series 
expansion of a wave phase is often used over basis 
functions.1,2 

The orthogonal normalized system of functions 
that obeys the Karhunen-Loeve-Obukhov (KLO) 
theorem is considered to be optimal for representing the 
waves propagated through a random medium.3,4 The 
KLO basis is a solution to the variation problem by 
minimizing the norm of error in the series expansion of 
the random phase,  within a receiving aperture with the  
a priori information in the form of the phase 
correlation function.  In our earlier papers2,5 we have 
solved the problem on obtaining the KLO functions for 
the medium with Kolmogorov turbulence. 

But, the KLO basis, while being optimal has no 
properties of a fast transform that allows the wave 
dynamics to be observed in real time. Therefore we have 
derived analytical relations6 enabling one to pass, in the 
expansions of the optical wave phase, from the bases of 
Walsh functions and Haar wavelets, whose series 
expansions are of the fast type, to the statistically 

optimal KLO basis. 

It is more suitable for the round aperture to 
present the KLO functions in factored form by 
separating the radial and azimuth components 

ψk(ρ) = Rj(ρ) Θ
l(θ) , (1) 

where ρ = {x, y} = (ρ, θ). Walsh functions Wal(ρ) and 
Haar functions H(ρ) are presented in a similar way 

Walnm(ρ) = Waln(ρ)Walm(θ),  

Hnm(ρ) = Hn(ρ)Hm(θ). 

The azimuth component of the KLO function 

Θl(θ) has the  following form: 

Θl(θ) = exp (ilθ), l ∈ Z . (2) 

Expansion of the functions Θl(θ) into a series over 
Walsh functions yields the azimuth transformation 

matrix b
l
 = (b1

l
, b2

l
, ..., bN

l
) 

Θl(θ) = ∑
n=0

N

 b
l
n Waln(θ). (3) 

The relation of the exponential functions to Walsh 

functions determined by the matrix b
l
 is widely used in 

the fast transforms and may be readily found in the 
literature.7,8 

Transformation matrixes for azimuth components 
of the KLO functions in terms of the Haar functions 
Hm(θ) are calculated similarly. 

The radial component of the KLO functions may 
be presented, in terms of the Walsh functions, in the 
following form: 

R
l
j(ρ) = ∑

n=0

N

 d
l
jn Waln(ρ), (4) 

where the coefficients d
l
j = (d

l
j1, d

l
j2, ..., d

l
jN) are the 

eigenvectors of the Gram matrix with the elements 

A
l
ps = 

1
N2 ⌡⌠

0

1

 ⌡⌠
0

1

 ρMl(ρ, ρ′) × Walp(ρ) Wals(ρ′) dρ dρ′. (5) 

Here Ml(ρ, ρ′) is the kernel of the homogeneous 
Fredholm integral equation of the second kind (the 
formula (10) in Ref. 6), the coordinate ρ is normalized 
by the receiving aperture radius.   

We have made use of the Jacobi method9 to obtain 
the eigenvalues and eigenvectors of the Gram matrix 
when making numerical simulations. 

Numerical simulation of the KLO functions 
through the Walsh and Haar functions was performed 
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for the Kolmogorov turbulence spectrum.  Assuming 
this model the structure function has the following 
form1: 

D(ρ) = 
6.88

r
5/3

0

 ρ5/3 , 

where r0 is the Fried radius.  The form of the kernel 
Ml(ρ, ρ′) for the model of Kolmogorov turbulence  may 
be found in Ref. 6.   

 

Figure 1 shows the view of the radial components 
for the first KLO functions expanded over 8 (Fig. 1a) 
and 32 (Fig. 1b) Walsh functions.  One can see from  
 

the figure that for N = 32 the radial components of the 

KLO functions R
l
j(ρ) practically coincide with the 

radial components of the KLO functions calculated 
with high accuracy in Refs. 5 and 10, and much exceed 
the accuracy of the optimal function calculated in 
Ref. 11. 

Below we present an explicit form of the 
transformation matrixes for radial components of the 

KLO functions R
l
j(ρ) in terms of the Walsh functions 

for j = 1, N , N = 8, and several first azimuth indexes l 
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 0.850 $0.461 $0.228 $0.029 $0.114 $0.014 $0.006  0.002

 0.340  0.584  0.144 $0.632  0.086 $0.306 $0.109 $0.106

 0.127  0.501 $0.528  0.414 $0.148  0.121  0.009 $0.496

$0.052 $0.096  0.166 $0.313 $0.329  0.259  0.740 $0.374

$0.017 $0.223  0.027  0.110  0,723 $0.377  0.226 $0.470

$0.027 $0.097 $0.087 $0,336  0.374  0.747 $0.347 $0.227

$0.134  0.051 $0.698 $0.283  0.250 $0.017  0.381  0.454

 0.354  0.354  0.355  0.354  0.353  0.354  0.353  0.353
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 0.798 $0.550 $0.219  0.010 $0.107  0.008  0.010  0.050

$0.346 $0.389 $0.183  0.753 $0.126  0.334 $0.015 $0.029

$0.178 $0.478  0.575 $0.133  0.131 $0.051 $0.359  0.493

 0.082  0.236 $0.440  0.280  0.399 $0.358 $0.523  0.324

 0.112  0.003  0.084 $0.131  0.398  0.544 $0.504 $0.506

 0.017  0.259 $0.230 $0.221 $0.524  0.522 $0.282  0.454

$0.252 $0.257 $0.450 $0.374  0.498  0.262  0.382  0.257
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 0.754 $0.604 $0.212  0.071 $0.110  0.032 $0.003  0.071

$0.340 $0.202 $0.286  0.776 $0.135  0.354 $0.051 $0.117

$0.189 $0.344  0.411  0.056  0.178 $0.019 $0.612  0.517

$0.111 $0.288  0.567 $0.234 $0.429  0.494  0.225 $0.225
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FIG. 1. The view of radial components of the KLO 
functions in the expansion over N Walsh functions: 
N = 8 (a), N = 32 (b). 

 

It should be noted that the sum of squares of the 
elements in every line and column is the norm of the 

function R
l
j(ρ).  This value is constant and in this case 

it equals to unit because the basis is orthonormal 
 

∑
n=1

N

 (d
l
jn)

2
 = 1. 

It is clear that the closeness to unit can serve as  
the precision criterion of the calculations of the KLO 
basis expansion coefficients. 

Similarly were obtained the coefficients of R
l
j(ρ) 

expansion over the Haar wavelets.  

But, if we have the expansion coefficients of the 

radial component R
l
j(ρ) over the Walsh functions the 

expansion coefficients of R
l
j(ρ) in the Haar basis can be 

obtained in different way using a close relation between 
the Walsh and Haar functions written by the 
transformation matrix.12 

Figure 2 presents a 3-D view of the first KLO 
functions  ψk(ρ) represented using a limited number of 
the Haar functions.  One can see from this figure that 
these  KLO functions practically coincide with the 
KLO functions calculated highly accurate using Zernike 
polynomials in Ref. 5. 

In the papers devoted to the choice optimal basis 
for the wave phase series expansion the KLO functions 
are obtained from the numerical solution of the integral 
equation10 or using approximations, for their 
calculation.11,13 We have developed an effective 
method to calculate the functions of an optimal basis.  
Using this method we have calculated, in the numerical 
experiment, the KLO functions through the Walsh 
functions and Haar wavelets for the Kolmogorov 
atmospheric turbulence within a round receiving 
aperture to a high degree of accuracy.   
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FIG. 2. Spatial form of the KLO functions ψk(ρ) represented in the basis of Haar functions Hnm(ρ), N = 32, k 

equals to 2, 4, 8, and 13 for a, b, c, and d, respectively. 
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