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In this paper we analyze the influence of thermal stability of the atmosphere 

on the refraction of laser beams propagating along surface horizontal paths. It is 

shown that under unstable atmospheric conditions a laser beam can hit to the same 

point at the receiving plane along two trajectories. It gives two different refraction 

angles due to focusing atmospheric lens, which is caused by unstable stratification 

of temperature.  The difference between these trajectories decreases with increasing 

the turbulent flux of heat. Beginning with the definite critical value of heat flux, a 

laser beam on horizontal path does not hit to the given point. The estimates of 

maximal length of path between two points where steady optical connection can 

occur at unstable atmospheric stratification are presented in the paper. 
 

1. INTRODUCTION 

 

Phenomenon of light refraction in the atmosphere 
was studied theoretically and experimentally during 
many years, and many of the fundamental and 
remarkable results in this field were generalized in a 
series of published monographs (see, for example, 
Refs. 1$4). Of special interest are Refs. 1 and 5, where 
the Monin-Obukhov similarity theory was first used for 
evaluating the optical refraction along the surface paths 
and some optical phenomena observed in the 
atmosphere are explained. 

At the same time, refraction of laser beams 
propagating in the surface layer was not yet directly 
analyzed, and peculiarities of this phenomenon for 
narrow light beams depending on thermal stability of 
the atmosphere were not studied. 

 

2. FORMULATION OF THE PROBLEM 
 

In laser beam propagating in the atmosphere, the 
beam lateral wander occurs due to refraction on 
inhomogeneities of the air refractive index. The 
equation for the vector of centroid of the laser beam 
intensity distribution ρc(x) = {zc, yc} in the observation 
plane ρ = {z′, y′} at a distance x from the source, 
characterizing the beam drift from the initial direction 
of propagation, is of the following form6: 
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where I(x, ρ) is the intensity distribution of a laser 

beam, ∇ρ = {d/dz, d/dy}, n is the air refractive index. 
The boundary condition in Eq. (1) is given by the 
expression ρc(0) = {0, 0} and dρc(0)/dx = {α, 0}, 
where α is the angle (in radians) at which the laser 
beam is directed relative to the x axis.  

The regular change of the refractive index along 
the vertical coordinate z′ makes a basic contribution to 
the beam wander. Therefore, we neglect the turbulent 
fluctuations of the refractive index and the horizontal 
beam displacement in Eq. (1). Further we assume that 
the typical scales of variation of the vertical gradient of 
the mean value of the refractive index are much larger 
than the laser beam size, and in Eq. (1) we take 
dn(x, z′)/dz′ ≈ dn(x, zc)/dzc. The beam refraction is 
analyzed for the case of an even underlying surface 
assuming homogeneity of the refractive index on a 

sphere so that n(x, zc) = n(z(x, zc)), where z is the height. 
For horizontal paths considered here, when a source and 
a receiver are located at the same height hs, z(x, zc) =  

= [(RE + hs)2
 $ x(L $ x) + zc

2+ zc 4(RE + hs)2
 $ L2 ]1/2 $ 

$ RE, where RE is the Earth’s radius, L is the length. 
As a result, Eq. (1) takes the form 

 

d2
 zc

dx2  = m 
dn(z(x, zc))

dz
 , (2) 

 

where m = dz(x, zc)/dzc. Taking into account the 
conditions RE >> hs and RE >> L in Eq. (2), let us 
assume that z (x, zc) = hs − x(L − x)/(2RE) + zc and 
m = 1. We find such values of the angle α, at which 
the beam hits to the given point of reception, i.e., 
zc(L) = 0.  

 



598   Atmos. Oceanic Opt.  /July  1998/  Vol. 11,  No. 7 V.A. Banakh and I.N. Smalikho 
 

3. VERTICAL GRADIENT OF THE REFRACTIVE 

INDEX 

 

The refractive index of light for dry air under 
standard atmospheric conditions is determined by the 
expression4  

 

n(z) = 1 + νρ(z),   (3) 
 

where ν = 10−6
 

.
 222(1 + 0.0075/λ2) ≈ 2.22.10−4 m3/kg, ρ 

is the air density, kg/m3. From the basic equation of 
atmospheric statics: dP/dz = − ρg, where P is the 
pressure, g is the acceleration of gravity, and from the 
equation of the dry air state: P = RcρT, where T is the 
absolute temperature, Rc = 287 m2/(s2 . grad) is the 
gas constant, the expression can be derived for the 
altitude air density profile in the form 
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where ρ0 and T0 are the density and the absolute 
temperature at the height z0, γA = g/Rc = 
= 3.42 . 10−2 deg/m is the temperature gradient in the 
homogeneous atmosphere (ρ = const, dρ / dz = 0). 
Then for the vertical gradient of air density dρ(z)/dz 
we obtain 
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where γ(z) = − 
dT(z)

dz
  is the temperature gradient 

represented as7  
 

γ(z) = γa − 
dθ(z)

dz
 . (6) 

 

In Eq.(6), γa = g/cp = 0.98.10−2 grad/m is the 
adiabatic temperature gradient, cp = 103 J/(kg . deg) is 
the specific heat, θ(z) is the potential temperature.  

For the surface atmospheric layer (up to 50 m 
height) in Eq. (5) we can assume T(z) ≈ T0 and 
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dz′
T(z′)  ≈ 1. Then from Eqs. (3), (5), and 

(6) for the vertical gradient of the refractive index in 
Eq. (2) we have 
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According to the thermodynamic theory of the surface 
layer,8$10 the following equation can be written for the 
potential temperature θ: 

 

dθ(z)
dz

 = − 
1

κU*
 . 

H
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 Φθ(ζ), (8) 

where κ ≈ 0.4 is the Karman constant; U* = − <w ′ u ′> 
is the friction rate (angular brackets denote the 
statistical averaging); w′ and u′ are the fluctuations of 
the vertical and longitudinal components of wind 
velocity, respectively; H = “pρ0<w′ θ′> is the turbulent 
thermal flux; θ′ denotes the temperature fluctuations; 

Φθ(ζ) is the universal dimensionless temperature 
function of the dimensionless argument ζ = z/Lh; 

Lh = − U
 3
*
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 “pρ0
 is the Monin-Obukhov 

scale. In its turn, the friction rate in Eq. (8) can also 
be expressed through the universal function ΦU(ζ) for 
the wind velocity  

 

dU(z)
dz

 = 
U*

κz  ΦU(ζ). (9) 

 

Based on the known experimental data,8$11 as 

models of the universal functions ΦU(ζ) and Φθ(ζ) we 
will further use the following functions: 

 

ΦU(ζ) = 
⎩
⎨
⎧ 1 + 5ζ, ζ ≥ 0,

(1 $ 15ζ)$1/3, ζ < 0
  (10) 

 

and 
 

Φθ(ζ) = 

⎩⎪
⎨
⎪⎧

0.7 + 7.75ζ, 0.2 ≤ ζ,

0.95 + 5.24ζ + 6.3ζ2, 0 ≤ ζ < 0.2,

0.95 + 5.24ζ + 16.36ζ2, $0.1 ≤ ζ < 0,

0.274($ζ)$1/3, ζ < $ 0.1.

(11) 

 

From the measurements of the wind velocity and 
temperature at different heights of the surface layer, 
using Eqs. (8)−(11) we can calculate the friction rate 
U* and the turbulent heat flux H (the gradient 
method). According to the known experimental  
data,8$11 the value of H varies from −40 to 
+400 W/m2. The friction rate U* depends on the 
geostrophic wind velocity G, the roughness parameter 
z0, the Coriolis parameter f, and the turbulent heat flux 
H. In Ref. 10 it is shown that the ratio U*/G can vary 
from 0.01 to 0.1. 

The sign and the value of the potential 
temperature gradient determine the type of temperature 
stratification occurring in the atmospheric boundary 
layer. At dθ(z)/dz < 0 the unstable temperature 
stratification takes place, at dθ(z)/dz = 0 the neutral 
temperature stratification is observed, and at 
dθ(z)/dz > 0 the stable temperature stratification occurs.  

Consequently, at the neutral temperature 
stratification (dθ/dz = 0) the vertical gradient of the 
refractive index in the surface layer, in general, does 
not depend on the potential temperature gradient and 
the height above the underlying surface z, and it is 
determined by the difference of the adiabatic 
temperature gradient γa and the temperature gradient in 
the homogeneous atmosphere γA 

 

dn(z)
 dz

 = ν 
ρ0

 T0
 (γa − γA) . (12) 
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When analyzing Eqs. (8) and (11) we deduce that 
at rather large negative values of heat flux H (stable 

stratification) when ζ >∼ 1, the gradient dθ(z)/dz is 

independent of the height z, and for the gradient of the 
refractive index we have the expression similar to Eq. 
(12):  

 

dn(z)
 dz

 = ν 
ρ0

 T0
 (γa − γA − γB) , (13) 

 

where 
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In the case of unstable stratification (H > 0), if 
ζ < − 0.1, it follows from Eqs. (8) and (11) that the 
gradient of potential temperature is determined by the 
expression 
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 = − 
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and is independent of the friction rate U*. In this  
case, with change of the height z above the underlying 
surface (the value dθ/dz given by Eq. (15)) the 
refractive index gradient (7) may be both negative and 
positive due to negative value of dθ(z)/dz. On 
condition that in Eq. (15) T0 = 288 deg, ρ0 = 
=  1.225 kg/m3, for the gradient of potential 
temperature at m = 40 W/m2 we obtain dθ/dz = 
= − 0.29 deg/m at 2 m height and dθ/dz =  
= − 0.034 deg/m at 10 m height. At m = 400 W/m2 at 
the same heights the gradient dθ/dz takes the 
following values: dθ/dz = − 1.34 deg/m and 
dθ/dz = − 0.158 deg/m. 

It follows from Eqs. (7), (12)−(15) that the main 
atmospheric parameter, which characterizes the 
dynamics of vertical gradient of the refractive index 
and, consequently, the angle of regular refraction in the 
surface layer, is the turbulent heat flux H. The friction 
rate U* may have the marked effect on the parameter α 
only at the stable stratification. According to the 
experimental data,10 at stable stratification the ratio 
U*/G is about 0.02. Thus, for typical values of the 
geostrophic wind velocity G = 10 m/s the value of 
U* is 0.2 m/s. It is just the value of the friction rate 
we used for the calculations given here. The parameters 
T0 = 288 deg and ρ0 = 1.225 kg/m3 were given 
according to the standard atmospheric model (All-
Union State Standard 4401−64).1  

 
4. RESULTS OF REFRACTION CALCULATION  

4.1. Neutral Stratification 

 

Assuming in Eq. (7) that dθ/dz = 0 and having 
substituted this expression into Eq. (2), after 
integration we obtain the following expression: 

 

zc(L) = $ 
1
2
 ν 

ρ0

T0
 (γA $ γa) L2 + αL. (16) 

 

The refraction angle can be found from Eq. (16) as 
 

α = 
1
2
 ν 

ρ0

T0
 (γA $ γa) L. (17) 

 

It follows from Eq. (17) that at neutral 
temperature stratification the angle α is positive, 
independent of height (within the surface layer), and 
linearly increasing with path length L. 
 

4.2. Stable Stratification 

 

It follows from Eqs. (2) and (3) that in the 
limiting case of high stability of thermal stratification 
the refraction angle can be estimated from the 
asymptotic equation 
 

α = 
1
2
 ν 

ρ0

T0
 (γA $ γa + γB) L. (18) 

 

Under such conditions, it is, as for the neutral 
stratification, positive, height independent, and linearly 
increasing with L.  

 
4.3. Unstable Stratification 

 
In the case of highly unstable temperature 

stratification, when calculating the refraction angle by 
Eq. (2), approximated equation (15) for the gradient of 
potential temperature can be used. Consequently, at 
highly unstable stratification the refraction angle α is 
dependent on the height z and may be both positive 
and negative. 

In the general case, Eq. (2) with the right-hand 
side determined by Eqs. (7), (8), and (11) was 
calculated numerically using the Runge-Kutta method. 
Using the iteration procedure the angle α = dzc(0)/dx 
meeting the condition zc(L) = 0 was found. 

Figure 1 shows the results of calculations of the 
refraction angle α (in angular minutes) as a function of 
the turbulent heat flux H for the path of length 
L = 10 km at hs = 10 m.  

From Fig. 1 it follows that at the stable 
stratification (H < 0) when H = −20 W/m2, the angle 
α on this path may be as great as ∼ 3′. At the unstable 
stratification (H > 0), Eq. (2) with zc(L) = 0 has a 
solution at the two different angles of refraction α1 and 
α2 (α1 is for the curve 1 and α2 is for the curve 2 in 
Fig. 1). Analysis of Eq. (2) at arbitrary values of zc(L) 
has shown that at α2 < α < α1  the beam coordinate 
zc(L) < 0, otherwise (α2 > α > α1) zc(L) > 0. With 
increasing flux H, the difference in the values of  α1 
and α2 decreases and then fully vanishes at some 
H = Hcr. In this case Hcr ≈ 330 W/m2. For the flux 
H > Hcr Eq. (2) has no solution under the condition 
zc(L) = 0. Thus, Hcr is the critical value of the 
turbulent heat flux for a given path, starting with 
which further increase of the flux H keeps the laser 
beam from entering the receiver zc(L) = 0 (the beam 
height in the observation plane will always exceed hs). 



600   Atmos. Oceanic Opt.  /July  1998/  Vol. 11,  No. 7 V.A. Banakh and I.N. Smalikho 
 

 
FIG. 1. The refraction angle vs. the turbulent heat flux at hs = 10 m and L = 10 km. 

 

The presence of the two solutions α1 and α2 of 
Eq. (2) at 0 < H < Hcr is due to the focusing 
(vertically) effect of the medium on the optical beam. 
However, in practice the effect of vertical beam 
focusing is evidently hard to notice against a 
background of turbulent blooming of the beam in the 
receiving plane. 

Figure 2 shows the change of the beam height 
along the propagation path at different values of the 
turbulent heat flux H. The dashed curve is for variation 
of the height z without considering the refraction 
(zc(x) = 0 at any x). Curves 2 and 2′ are calculated at 
the same value of H = 200 W/m2. It is evident that in 
the first case the laser beam in the middle of the path 
drops down to the height z ≈ 6.5 m, in the second case 
the beam drops down to z ≈ 2 m. 

 

 
FIG. 2. Variation of the beam height along the 
propagation path at H = − 20 W/m2 (1), H = 200 W/m2 

(2 and 2′), and H = Hcr = 330 W/m2 (3). 
 

Figure 3 shows Lm calculated as a function of the 
height hs at H = 40 W/m2 (curve 1) and 
H = 400 W/m2 (curve 2). The pathlength L = Lm 
corresponds to the maximum distance at H = Hcr, at 

which the stable optical communication between the 
source and the receiver at the surface horizontal path is 
still possible. 

 

 
FIG. 3. The maximum pathlength Lm vs. the height hs 
at H = 40 W/m2 (1) and H = 400 W/m2 (2). 

 

According to Fig. 3, at the very unstable 
atmospheric stratification (H = 400 W/m2), the 
maximum distance, at which the communication between 
the source and the receiver is still possible,  is 
Lm ≈ 1.7 km for the source and the receiver being at 2 m 
height and Lm ≈ 18 km for the height of 20 m. It is 
evident that in absence of refraction (dn/dz = 0),  

Lm ≈ Lg where Lg = 8REhs is the distance in a straight 
line connecting the points of the source and the receiver 
when at perigee this line is tangent to the Earth’s surface 
because of the spherical shape of the Earth’s surface.  

In Fig. 3 the dependence of Lg on hs is shown by 
the dashed curve. It is clear that at unstable 
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stratification, Lm may be several times less than Lg. At 
neutral and stable stratification the beam trajectory 
z(x) passes higher than the curve hs − x(L − x) / (2RE). 
Therefore, in this case (H ≤ 0) optical communication is 
possible at distances larger than Lg. 

Some examples of estimates of minimum possible 
shifts of the beam power centroid up from the receiver 
Δhm = min{zc(L)} at different H > Hcr are presented in 
the Table I for the path with length L = 5 km and 
height hs = 3 m. The value of Hcr for such a path is 
Hcr = 44 W/m2. Also given here are the values of 
temperature gradient γ = $ dT/dz at the height of 3 m 
and estimates of the effective beam radius aef (Ref. 6) 
at the path end with the initial radius of 7 cm and 
radiation wavelength λ = 1.06 Um. 

 

TABLE I. 
 

H, W/m2 50 100 200 300 400 

γ, grad/m 0.206 0.321 0.503 0.655 0.792
Δhm, m 0.23 1.52 3.26 4.55 5.59
=ef, m 0.58 1.1 2.0 2.7 3.3 

 

It is seen from the Table that the values of Δhm are 
comparable at H > Hcr, and they increase the effective 
beam radius in the receiving plane, thus necessarily 
resulting in violation of communication between the 
source and the receiver being at the same height. 

The results presented above may be useful when 
choosing the geometry of the optical communication 
(path length and height) depending on the state of the 
atmospheric surface layer.  
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