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We present here the theory of the refraction inverse problem developed for 

the immersion geometry when either the receiver or a source change its position 

inside the atmosphere to be sounded. We consider the problem for the case when 

the refraction is set only within some portion of the entire altitude range studied. 

The inverse problem reduces to solution of integral equation of the 1st kind that is 

different inside and outside the altitude interval of sounding. We also present here 

analytical solutions obtained for the region inside the observation interval when 

assuming the receiving angle to be constant. Some results of numerical simulations 

are given in the paper as well. 
 

The refractometric techniques of studying the 
atmospheres of the Earth and other planets have recently 
received a wide use with the development of space 
researches. Solving the inverse refraction problems 
enables one to reconstruct vertical distribution of the 
refractive index and the related meteorological parameters 
of the atmosphere as well. Peculiarities of any concrete 
inverse problem and the type of equation to be solved are 
determined by the relative position of a radiation source 
and a receiver, the quantity measured, and the radiation 
frequency range. 

The refractometric measurement technique was 
tried, for the first time, in explorations of the Solar 
system planets with space vehicles (see Refs. 1$3). 
Then similar methods were developed for studying the 
Earth's atmosphere (Refs. 4$7). In these limb 
measurements the radiation source and the receiver are 
outside the atmosphere under study. In this case the 
problem can be reduced to solving the Abel equation, 
that is to the mathematically correct problem. 

In the case when the receiver is on the Earth's 
surface the problem on reconstructing the refractive 
index profile is described by the Fredholm equation of 
the 1st kind. Its solution is already an ill-posed 
problem.8$10 

In Ref. 11 we have already considered the 
refraction inverse problem for the case when a radiation 
source or the receiver change its position inside the 
atmosphere (the immersion geometry). This case may be 
rather important when investigating the planets by 
means of descending vehicles. We showed that in this 
case the measured quantities and the values to be 
reconstructing are related by Volterra integral equation 
of the 2nd kind. We have also developed there the 
solution algorithms and performed some numerical 
simulations. 

In this paper we generalize the statement of the 
problem to the case when the refraction is known not 

along the whole atmospheric path, but only within a 
finite portion of it. 

To solve the problem, we applied Tikhonov 
method of the generalized discrepancy.12 We have also 
investigated, using numerical simulations, the accuracy 
that may be achieved and the optimal conditions for 
reconstruction of the refractive index of the Earth’s 
atmosphere. These calculations were made for the case 
of solving the problem on the whole height interval 
considered, and when considering only the atmospheric 
layers above (outer region) and below (inner region) 
the upper measurement boundary, depending on the 
position of the latter. In the case when the elevation 
angle of refraction measurements is constant we 
deduced the conversion formula for the inverse problem 
considered, i.e., we represented the refractive index 
profile inside the inner region through the refraction 
value measured. 

 
STATEMENT OF THE PROBLEM 

 
The solution of the refraction inverse problem in 

the immersion geometry reduces to Volterra equation of 
the 2nd kind (see Ref. 11) 

N(ph) $ ⌡⌠
ph

∞

 N(p) 
pph cosθ0(ph)

[ ]p
2
 $ ph

2
 cos

2 θ0(ph)
3/2

 dp = 

= 106 tan(θ0) ε(ph), (1) 

which relates the initial refractive index profile N(ph) 
and the observed refraction angle ε(ph). Here p = nr, 
r = r0 + h, r0 is the Earth’s radius, n is the refractive 
index, N = 106 (n $ 1) is the refraction factor. The 
N(p) profile may by converted into the N(h) profile by 
the following expression: 

h = {p/[1 + 10$6 N(p)]} $ r. 
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In our earlier paper, Ref. 11, we have considered 
the method of reconstruction of the refractive index 
profile for the elevation angle θ0(ph) = const. In so 
doing, we obtained that the reconstructed profile highly 
accurate coincided with the initial one. We showed that 
the reconstruction error depends on the error of 
refraction angle measurement, the position of the 
radiation source and the receiver relative to the Earth’s 
surface, and the elevation angle. When making the 
numerical experiments, we assumed that the refraction 
angle is measured with a given error along the entire 
altitude range where the refractive index profile is to 
be reconstructed. 

If to solve a more complicated problem assuming 
the refraction to be set only within the interval 
p0 < ph < pH (that is up to the height H), then the 
interval of reconstruction splits into two physically 
different regions. One may assume that in the inner 
region the solution is close to that of the problem in its 
initial formulation. In the outer region the problem 
approaches that which is characteristic of the Fredholm 
equation of the 1st kind. In the latter case the solution 
properties are similar to those of the inverse problem 
solution on the astronomical refraction, Ref. 12. Under 
the assumption that not only the refraction angle 
values, but the values of the refractive index are known 
up to the height H either, the integral in the left-hand 
side of Eq. (2) will contain the known component and 
in the outer region, h > H, the problem on determining 
the refractive index reduces to the Fredholm equation 
of the 1st kind thus being close to the problem 
described in Ref. 12 
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Moreover, at a constant elevation angle the right-
hand side of the equation will not be informative, as 
having become a constant value. To determine the 
refractive index profile, it is necessary that the angle θ0 
has different values at different ph, as, for instance, 
when measuring at different moments in time. It is well 
known that the equations of this type are ill-posed and 
solution of those needs for regularization methods based 
on a priori information on the properties of the exact 
solution.  

Evidently, the Eq. (1) is, on the whole, an ill-
posed problem both in the outer and the inner region, 
though without any certain name of its type since it 
combines the features of the equations of both types 

mentioned above, which, however, should manifest 
themselves in the outer and inner regions of 
reconstruction in different ways.  

 
THE METHOD OF THE INVERSE PROBLEM 

SOLUTION 

 
When solving ill-posed problems without use of 

any additional information, large errors in 
reconstruction can occur even at small errors in the 
initial data.12 If the exact solution belongs to the class 
of compact functions, the problem can be solved by 
minimizing the discrepancy functional, as this 
functional is convex for compact functions. In this 
paper the solution is based on the Tikhonov principle of 
the generalized discrepancy. This principle uses some 
general information about the exact solution as, for 
example, its membership of the class of nonnegative 
quadratically summable functions with the 
quadratically summable derivative. This well agrees 
with the specific features of the problem being solved. 
This allows one to use the maximum of the solution 
deviation modulus from the exact one as a measure of 
reconstruction accuracy assuming some typical 
distributions of the refractive index. 

Let us write Eq. (1) in the operator form 

KN = εδ, (3) 

where K is the operator of equation (1), εδ is the data 
vector with the error δε that satisfies the inequality 

δε2 = sup||KN $ εδ||L2

2
 = 

1
Δph

 ⌡⌠ [ε(ph) $ εδ(ph)]2 dph, (4) 

where N is the right-hand side of Eq. (3), that 
corresponds to the exact solution N(p), Δph is the 
integration interval. Within the framework of the 
method used one can take into account the error of the 
kernel that includes both the digitization error δh in the 
numerical simulation, and possible inaccuracy of the 
quantitative description of the kernel 

δh

2
 = sup||KhN $ KN||L2

2
, (5) 

where Kh is the approximate kernel set when solving 
Eq. (1). The inconsistency measure δμ  cannot exceed 

the resulting error due to measurement errors and those 
in the kernel 

δμ
2
 = inf || KhN $ εδ || ≤ (δε + δh)2.  (6) 

The approximate solution minimizes, in the 
Tikhonov method, the smoothing functional 

Mα(N) = || KhN $ εδ ||L2

2
 + α || N ||

W
2
1 

2
 . (7) 

In the above relations L2 is the space of 

quadratically summable functions, W2
1
 is the space of 

quadratically summable functions with the 
quadratically summable derivatives. The regularization 
parameter α that determines the degree of the 



K.P. Gaikovich and G.Yu. Khacheva Vol. 11,  No. 7 /July  1998/ Atmos. Oceanic Opt.  
 

 

611

approximate solution smoothing, in Tikhonov 
generalized discrepancy method,12 is defined as a root 
of the one-dimensional equation of the generalized 
discrepancy 

ρ(α) = || KhN
α $ εδ ||L2

2
 $ δ2 = 0, (8) 

where Nα is the function that minimizes Eq. (7), 

δ2 = (δε + δh)2 + δμ
2
 is the parameter of the effective 

error including measurement errors, errors of 
discretization, and other inaccuracies of the kernel 
description. This parameter also includes the measure of 
equation inconsistency with its right-hand side that 
depends on these errors. Thus, the value of the 
regularization parameter and, therefore, the degree of 
smoothing the solution is related to the value of the 
effective error δ. When the effective error vanishes, in L2 
metrics, the approximate solution converges to the exact 

one, in the W2
1
 metrics. Therefore, according to Sobolev 

embedding theorem this solution uniformly converges to 
the exact one, i.e., in the metrics C where the maximum 
of modulus serves as norm. As a rule, the convergence 
rate is slower than in  the correct problems where the 
convergence rate is proportional to a decrease in δ. 

The parameters δh and δμ may be found in the 

process of numerical simulation when minimizing 
Eq. (7). Normally, the inconsistency measure limits the 
level of discrepancy, to which it is reasonable to 
minimize the functional (7). After the relevant  
discretization the problem of smoothing the minimizing 
functional reduces to its finite analog, that is to the 
well investigated, from the computation point of view, 
problem of quadratic programming. 

The peculiarity of any ill-posed problem is that no 
certain ratio exists between the error in the right-hand 
side of the equation and the accuracy of reconstruction 
since the latter essentially depends on the view of the 
initial function. So, for investigating the possibility of 
reconstructing the refraction profiles (the accuracy of 
reconstruction as a function of error level) assuming some 
typical model profiles one can make use of a closed 
numerical experiment. For making the method considered 
practical it is necessary to establish the connection 
between the parameter of the effective error δ, determined 
by the relation (8), in the Tikhonov method, and the 
experimental error. The problem is to obtain the estimate 
of δ having in mind the circumstance, that the 
experimental errors have a random nature. 

Let the error obey the normal distribution law 
with the mean value Δε and standard deviation σε. 
Taking also into account, that the efficiency of the 
method is tested numerically, and that the fact of the 
choice being optimal or not can be checked, we may 
take as the error not the maximum value of the 
integral in Eq. (4), but its mean value. As a result, 
we obtain 

δε2 = 
1

Δph

 ⌡⌠ <[ε(ph) $ εδ(ph)]2 > dph = 

= 
1

Δph

 ⌡⌠ [σε2(ph) + Δε2(ph)] dph. (9) 

At constant values of the parameters Δε and σε  

δε = σε2 + Δε2 . (10) 

If the bias error equals to zero δε = σε and at zero-
valued random error δε = Δε. Since the error in the 
solution of an ill-posed problem is not proportional to 
the error in the initial data and can be determined only 
numerically we have numerically made the 
corresponding analysis. 
 

NUMERICAL SIMULATION 
 

We have carried out a numerical experiment on 
solving the above stated problem assuming the 
measurement accuracy to be 1$10′′, that is 
characteristic of measurements in the optical range 
(Ref. 13), and typically exponential profile of the 
refractive index of the atmosphere. Then, using the 
initial profile, we calculated the refraction angle. After 
that we introduced a random noise into the value of the 
refraction angle calculated, thus simulating the errors 
of the refraction angle measurements in the atmosphere. 
It appeared from these experiments that the 
reconstruction in the outer region is effective only up to 
the height H < 5 to 10 km. 
 

 
 

FIG. 1. 
 

Figure 1 presents an example of reconstruction for 
H = 5 km with the accuracy of refraction measurements 
of 5′′. We assumed the elevation angle to vary from 
0.5°, at H = 5 km, up to 2.5° at H = 0. Figure 2 shows 
the reconstruction accuracy for H = 5 km versus height 
at different model errors of refraction measurements. In 
the altitude range where the refraction is set, the 
solution exhibit the properties characteristic of the 
Volterra equation, close, as a rule, to those of correct 
problems, that means that the reconstruction accuracy 
is almost proportional to the error in the initial data. 
Near the upper measurement boundary the solution 
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takes the form typical for ill-posed problems. The 
transition region is characterized by a growth of the 
solution inaccuracy and occupies rather wide altitude 
range where the solution behavior essentially varies. 
Figure 3 presents similar results for H = 20 km (we 
show the case with the assumed measurement error of 
0.01′′ as an example illustrating the convergence). The 
elevation angle of the observations varies from 0.5°, at 
H = 20 km, and up to 10° at H = 0. The measurements 
in the ranges of achievable accuracy are not informative 
in the outer region of reconstruction as it is seen that 
the error is the same at different accuracy and being 
close to the refractive index value at the relevant 
heights. There is little information about the outer 
layer here, and the destabilizing influence of the 
solution error from the outer region effects the equation 
solution in the inner range. 

 

 
 

FIG. 2. 
 

 
 

FIG. 3. 
 

Figure 4 shows the results of the refractive index 
reconstruction with the 5′′ modeled error that can be 
considered as the limiting one for the refraction 
measurements at different heights H, including the case 
of H = 40 km (the refraction is set within the entire 

reconstruction interval). Thus, at small measurement 
errors of the refraction angle it is possible to obtain 
satisfactory results on reconstruction of the refractive 
index profile, while being limited in choosing heights 
for measurements of the refraction angle. However, it is 
worth noting that, on the whole, for the geometry of 
partial immersion, the solution has a larger errors as 
compared to that of a well-posed problem.11  It is the 
manifestation of the fact that the problem is ill-posed 
that occurs not only in the outer region, but in the 
whole altitude range either. 
 

 
 

FIG. 4. 
 

SOME EXACT SOLUTIONS 
 

For the inner range, 0 <h <H, one can obtain, 
assuming θ0(ph) = const, the exact solution of equation 
(1). Let us differentiate Eq. (2) with respect to p 

 

dε
dp

 = 10$6 
p0 cosθ0 dN(p)

[ ]p
2
 $ p0

2
 cos

2 θ0
1/2

 dp
 . (11) 

 

By integrating the Eq. (11), using the values ε(ph) 
from the interval p0 < ph < pH, we obtain 

 

ε(ph) = 10$6 ⌡⌠
p0

ph

 
dN(p)

dp
 × 

× 
p0 cosθ0

p
2
 $ p0

2
 cos

2 θ0(ph)
 dp + ε(p0). (12) 

 

Its inversion formula has the following form: 
 

N(p) = 106 ⌡⌠
p0

p

 
dε(ph)

dph

 
 ph

2
 $ p0

2
 cos

2 θ0(ph)

p0 cosθ0
 × 

× dph + N(p0). (13) 

 

One can see from this that knowledge of the 
refractive index value on the surface is an essential 
requirement. 
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If one takes a different integration interval, then it 
is possible to obtain the problem solution for the case 
considered in Ref. 11, when the refraction is set in the 
entire altitude range 

 

ε(ph) = $10$6 ⌡⌠
ph

∞

 
dN

dp
 

p0 cosθ0

p
2
 $ p0

2
 cos

2 θ0(ph)
 dp (14) 

 

or after the inversion  
 

N(p) = $106
 ⌡⌠
p

∞

 
dε(ph)

dph

 
 ph

2
 $ p0

2
 cos

2 θ0(ph)

p0 cosθ0
 dph. (15) 

 

No solution can be derived for the outer region at 
a constant elevation angle. 
 

CONCLUSION 
 

The refraction inverse problem for the immersion 
geometry is generalized for the case, when the 
refraction measurements are carried out not on the 
whole altitude range of reconstruction of the 
refractive index vertical profile, but only on its part. 
Analysis of results of the numerical simulation shows, 
that the solution accuracy essentially depends both on 
the value of the model data error, and on the layer 
height, where the refraction is considered known. The 
transition region is characterized by an essential 
increase in the solution error. Near the upper 
boundary of the reconstruction range the error 
variations are close, in magnitude, to the refractive 
index value. At the height H = 20 km the 
measurement error in the outer region does not 
depend on the refraction measurement error, in the 
range of achievable errors. Satisfactory error of 
reconstruction in the whole layer may be reached only 
at the error of refraction measurements less than 1′′, 
that far exceeds the realistic accuracy of the 
refraction measurements. 

The solution structure of the equation essentially 
depends on the layer height where the refraction is set. 
For example, at a constant model error of 5′′ the 
reconstruction error varies for different heights over a 
wide range. At H = 5 km the solution in the inner 
region is close, by its properties, to that of a correct 
  

problem (H = 40 km), i.e., the reconstruction error also 
does not exceed 5N$units and gradually increases with 
the increasing height. The manifestation of the fact that 
the problem is ill-posed is most noticeable in the 
transition, and in the outer regions. The reconstruction 
error is large both in the outer, and in the inner regions 
at H = 20 km, i.e., the problem appears to be ill-posed 
in the whole altitude range.  

In this paper we obtained some explicit relations 
for the direct and inverse refraction problems in the 
immersion geometry for the case of partially available 
refraction measurements at a constant elevation angle. 
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