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The model of atmospheric turbulence is considered which takes into account 

the single-point distribution laws as applied to pulsations of wind velocity and 

passive admixture concentration components.  The relations between pulsations of 

wind velocity and concentration components are determined by the Reynolds stress 

tensor and the turbulent admixture flows.  Based on these assumptions and using 

the simulation methods for pulsations of wind velocity and admixture 

concentration, the expression has been derived enabling estimation of the admixture 

concentration variance without solving the corresponding semiempirical equation. 

The obtained results are compared with the variance values found by traditional 

methods.  The estimates of the application area of the proposed method are 

obtained. 

 
When simulating the aerosol particle spread in the 

atmosphere, sometimes it is essential to determine a 
series of additional characteristics apart from the fields 
of mathematical expectation of admixture concentration 
C(x, y, z, t).  One of such characteristics is, for 
example, the concentration variance σ2(x, y, z, t).  
When the simulation is made using the semiempirical 
equation of turbulent diffusion, then upon solution of 
the appropriate equation for the admixture 
concentration the variance can be found by solving the 
similar equation.1,2  In some cases, the concentration 
variance can be estimated without solving this 
equation, for example, by means of the algebraic 
model.1  However, applicability of such an approach is 
not quite clear. 

This paper describes the method allowing 
estimation of the concentration variance without 
invoking the procedure of solution of the appropriate 
semiempirical equation, as well as discusses the 
obtained results. 

Let us consider the model of the process of 
turbulent transfer of an admixture in the atmosphere 
taking into account the following factors: the single-
point distribution laws of pulsations of the wind 
velocity components, which are taken to be normal3; 
the single-point distribution law of pulsations of the 
concentration4; and the correlation between pulsations 
of the wind velocity components and the admixture 
concentration. The correlation between pulsations of 
the wind velocity components is determined by the 
Reynolds stress tensor, and the turbulent flows of an 
admixture determine the correlation between pulsations 
of the admixture concentration and the wind velocity 
components.2   

The statistical ensemble representing pulsations of 
the wind velocity components is given by the following 
expressions: 

U ^x = σ. α1, U 
^
3 = σy(=21 α1 + =22 α2), 

U ^x = σz(=31 α1 + =32 α2 + =33 α3),  (1) 

where U ^x, U 
^
y, U 

^
z are pulsations of the wind velocity 

components; σ., σy, σz are the standard deviations of 
pulsations; αm are the normally distributed random 

successions with the characteristics αmαn  =  δmn;  

αm  = 0, where δmn is the Kronecker symbol (m, n = 1, 

2, 3).  The over-bar denotes the procedure of averaging 
over the statistical ensemble.  The coefficients a21, 
a22, ..., a33 can be easily found from the relations given 
by the Reynolds stress tensor and are of the form 

=21 = rxy, =22 = (1 $ a 2
21)

0.5, =31 = rxz, 

=32 = (ryz $ a21a31)(1 $ a 2
21)

$0.5,  

=33 = (1 $ a 2
31 $ a 2

32)
0.5, 

where rxy, rxz, and ryz are the correlation coefficients of 
pulsations of the corresponding wind velocity 
components. 

Let α0 = ξ1α1 + ξ2α2 + ξ3α3, where ξm are 
constants.  The parameter α0 is the linear combination 
of normally distributed variables, and hence it is also 
normally distributed.  Then we give the variance of the 
parameter α0 

σ
2
α
 = ξ2

1 + ξ2
2 + ξ2

3 = 1. (2) 
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The random succession α0 is connected with the 
parameter r0 homogeneously  distributed from 0 to 1 by 
the normal law.  Assuming that the values of the 

distribution function F(C ^) are equal to r0, the solution 
of the given equation gives the unknown statistical 

ensemble of the concentration pulsations (C ^).  
According to the definition,2 the turbulent admixture 
flows ϕx, ϕy, and ϕz can be written as 

ϕx = σ. α1C 
^ , ϕy = σy(=21 α1C 

^  + =22 α2C 
^ ), 

ϕz = σz(=31 α1C 
^  + =32 α2C 

^  + =33 α3C 
^ ). 

Having expressed the correlations αmC ^ in the explicit 

form and combined them with the weight factors ξm, 
we obtain 

ϕx
 

σz

 ξ1 + ⎝
⎛

⎠
⎞b1ϕx

σx

 + 
b2 ϕy

σy

 ξ2 + 

+ ⎝
⎛

⎠
⎞b3 ϕx

σx

 + 
b4 ϕy

σy

 + 
b5 ϕz

σz

 ξ3 $ α0C 
^  = 0.  (3) 

The constants b1, b2, ... b5 are easily expressed through 
the parameters a21, a22, ... a33. 

Equality (3) in coordinates of ξm is the equation 
of a plane.  If the distance from the coordinate origin 
to this plane is more than unity, then the plane does 
not touch the sphere (2) and, evidently, it is impossible 
to determine the constants ξm.  If this distance is less 
than unity, the infinite set of ξm triplets is determined 
by coordinates of the points located at the 
circumference being the intersection line of the sphere 
and the plane.  Thus, the uniquely determinable triplet 
ξm can be found only if the plane is tangent to the 
sphere, namely, 

1/μ = [r2
xc + (b1 rxc + b2 ryc)

2 + 

+ (b3 rxc + b4 ryc + b5 rzc)
2

 ] 

0.5 = r
αc,  (4) 

where r
αc is the correlation coefficient of the 

parameters α0 and Ĉ; rxc, ryc, and rzc are the 
correlation coefficients of pulsations of the 
concentration and the wind velocity components.  The 
latter coefficients are determined by the relations: 
rxc = ϕx/σxσc; ryc = ϕy/σyσc and rzc = ϕz/σzσc, where 
σc is the standard deviation of concentration pulsations.   

It is evident that the correlation coefficient r
αc 

does not depend on the constants ξm and at a given 

distribution law F(Ĉ) (Ref. 4) is the universal function 

of the intensity of concentration pulsations Ic = σc/ C .  

The Ic dependence of r
αc is given in Fig. 1 (curve 1). 

From Eq. (4) it might be assumed that the 
dependence of the product of Ic and r

αc as a function of 

Ic uniquely expresses the dependence of the 
concentration variance on its mathematical expectation 
and the turbulent flows of an admixture.  Actually, at 

the given C , ϕx, ϕy, and ϕz, Eq. (4) multiplied by Ic 

does not depend explicitly on σc.  Therefore, by the 
value of Icrαc we can uniquely determine the value of 

Ic, and then the concentration variance.  Thus, the 
proposed model allows us to find the concentration 
variance without solving of the corresponding 
equation.1 

Evidently, the product Icrαc is also the universal 

function of Ic.  The Ic dependence of the product Icrαc 

is given in Fig. 1 (curve 2).  The curve reaches its 
maximum at Ic = 3.8 with the value 1.86.  We see that 
the function reciprocal to Icrαc also has two values.  Its 

first branch is defined at 0 ≤ Ic ≤ 3.8, and the second 

branch is defined at 3.8 < Ic.  Assume that C  = const. 

It follows from the definition of the turbulent flows 
that the increase of these flows results in the increasing 
scale of concentration pulsations and the growth of Ic.  
The first branch of the reciprocal function describes 
adequately this case.  The Ic behavior at the second 
branch contradicts to the physical sense, and therefore 
it should be rejected. 

 

 
FIG. 1.  Dependences of r

αc and Icrαc on the intensity 

Ic of concentration pulsations. 

 

However, there are more significant restrictions on 
the intensity Ic of pulsations. These restrictions are 
associated with the applicability conditions of the 
distribution law we use for the concentration.4  The 
experimental investigations and the data of a series of 
independent studies show that the distribution function 

of concentration pulsations F(Ĉ) from Ref. 4 is 
applicable only for Ic < 3.  Therefore, we will take into 
account just this limitation. 
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An expression is also proposed for determining the 
constants ξm, which, by definition, are the direction 
cosines of the vector connecting the origin and the 
point of tangency of the sphere and the plane 

ξ1 = μ rxc, ξ2 = μ(b1 rxc + b2 ryc), 

ξ3 = μ(b3 rxc + b4 ryc + b5 rzc). 

As a practical example we consider the process of 
spread of a weightless admixture in the half-space 
x ≥ 0.  Let us assume that the vector of a mean value of 

the wind velocity U
x

 = const is directed along the x 

axis.  The coefficients of turbulent diffusion may be 
given as Kx = 0; Ky = Kz = K = const.  Assume that 
the stationary point source of particles is located at the 
origin of the coordinates and emits Q grams of particles 
per second.  The semiempirical equations for 
determining the admixture concentration and the 
variance are reduced to the dimensionless form by 
introducing the scales of time, length, and 

concentration T = K( U
x

)$2, X = K( U
x

)$1, and 

C = QUxK
$2. In this case they are of the following 

form1,2: 

∂ C
⎯

∂x
 $ 

∂
2 C
⎯

∂y
2  $ 

∂
2 C
⎯

∂z
2  = 0,  (5) 

∂ σ
2
“

∂x
 $ 

∂
2
 σ

2
“

∂y
2  $ 

∂
2
 σ

2
“

∂z
2  = 2 ⎝

⎜
⎛

⎠
⎟
⎞∂ C

⎯

∂y
 

2

+ 2 ⎝
⎜
⎛

⎠
⎟
⎞∂ C

⎯

∂z
 

2 

$ 0.16I2
u σ

2
“ , 

where Iu is the pulsation intensity of the wind velocity 
components.  The second equation in the system (5) is 
written with the use of a hypothesis of proportionality 
of the turbulent diffusion coefficients to the 
corresponding components of the Reynolds viscous stress 
tensor,1,4 what has determined the form of the last-named 
term describing the dissipation of the concentration 
variance and the constant value in this term.  

For the given example, the expression for 
determining σc, according to the above-derived relation 
(4), is the following: 

Ic rαc = 
1

Iu C
 ⎣
⎢
⎡

⎦
⎥
⎤

⎝
⎜
⎛

⎠
⎟
⎞∂ C

⎯

∂y
 

2

+ ⎝
⎜
⎛

⎠
⎟
⎞∂ C

⎯

∂z
 

2 

 

0.5

.  (6) 

The right-hand side of Eq. (6) can be found using 
the numerical methods for the solution of the first 
equation of the system (5) (see Ref. 5).  Then, as 
follows from curve 2 in Fig. 1, we can determine the 
pulsation intensity Ic and then calculate the admixture 

concentration variance using the given values of C
⎯

. 
Figure 2 gives the example of the comparison of 

the calculated results on the concentration pulsation 
intensity Ic obtained using the numerical methods for 
solution of the set of equations (5) (abscissa) with the 
pulsation intensity obtained using the relation (6) 

without solving the set of equations (5) (ordinate).  
The points in the figure correspond to the points of the 
calculation pattern and are given for 50 ≤ x ≤ 104 and 
0 ≤ (y2

 + z2)1/2
 ≤ 104. The dashed line is drawn at a 45° 

angle to the axes.  In calculation, it was believed that 
Iu = 0.10. The agreement obtained at Ic < 0.8 is wholly 
satisfactory because the results are within the errors of 
the numerical methods used in calculations.  In this 
case, the determination error of the pulsation intensity 
of the admixture concentration does not exceed 5%. 

 

 
 

FIG. 2. 

 

It is clear from the data given in Fig. 1, that at 
Ic < 0.8, the Ic dependence of Icrαc is practically linear 

with an accuracy no less than 5%.  Therefore, for 
Ic < 0.8 Eq. (6) is greatly simplified 

Ic = 
1

Iu C
 ⎣
⎢
⎡

⎦
⎥
⎤

⎝
⎜
⎛

⎠
⎟
⎞∂ C

⎯

∂y
 

2

+ ⎝
⎜
⎛

⎠
⎟
⎞∂ C

⎯

∂z
 

2 

 

0.5

.  (7) 

This comment refers also to the general form of the 
given equation (4) at Ic < 0.8. 

In conclusion, we dwell on the comparison of this 
given approach with the above-mentioned algebraic 
method.  The essence of the algebraic method consists 
in the assumption of the balance of generation and the 
dissipation of the variance (see the two terms in the 
right-hand side of the second equation of the set of 
equations (5)).  According to the above-said, for this 
example we have the following expression for the 
intensity of concentration pulsations: 

Ic = 
3.54

Iu C
 ⎣
⎢
⎡

⎦
⎥
⎤

⎝
⎜
⎛

⎠
⎟
⎞∂ C

⎯

∂y
 

2

+ ⎝
⎜
⎛

⎠
⎟
⎞∂ C

⎯

∂z
 

2 

 

0.5

.  (8) 

Hence it follows that at least in the above-mentioned 
specific case the algebraic approach to the 
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determination of the concentration variance gives the 
variance estimates, which are unsuitable for practical use. 

Thus, we are able to verify that the use of the 
sufficiently simple but physically substantial model 
enables us to estimate the variance of the admixture 
concentration without solving the corresponding 
equation.  It is evident that the considered approach 
is not based on a specific type of the distribution 
laws of the wind velocity and concentration.  
Therefore, it can be improved by setting more 
accurate distribution functions with a wider range of 
applicability.  This approach is also suitable for 
practical implementation because when simulating the 
admixture spread using traditional methods it does 
not involve additional unknown values. 
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