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An exact analytical description of the geometrical factor of a lidar is 

obtained as an integral of a product of the Bessel functions within the framework 

of a small-angle approximation. A way to represent it in terms of elementary 

functions is proposed. The behavior of the geometrical factor along a path is 

analyzed for the case of sounding with separated source and receiver. 
 

Solution of inverse problems in dense media 
sounding requires a correct determination of the 
relation between singly and multiply scattered 
components in a lidar signal.1 Among the factors 
determining the behavior of this relation, the 
geometrical factor stands out, which carries information 
about the effect of geometrical parameters of the lidar 
sounding scheme upon the single scattering signal. In 
this paper, we obtain the exact analytical description of 
the geometrical factor within the framework of the 
small-angle approximation, propose a way to represent 
it in terms of elementary functions, and analyze the 
behavior along a sounding path with separated source 
and receiver. 

 

1. INITIAL EQUATIONS. FORMULATION OF THE 
PROBLEM 

 
Suppose that the scattering medium occupies the 

domain z > 0, the source and the receiver of optical 
radiation are placed in the plane z = 0, and their axes 
are oriented in parallel to the OZ axis and separated by 
distance d (Fig. 1). 

To describe the spatial-angular structure of the 
light field at the output of the radiation source with 
the center in the origin of coordinates, we use a model 
having the circular symmetry of the form 

 

I0(r, n) = A Σ(r, Rs) Ω(γ, γs)  (1) 

 
with stepwise intensity distribution 
 

Σ(s, t) = Ω(s, t) = U(t $ s) ,  (2) 

 
where U(t) is the unit step function (Heaviside 
function); the factor A = p0/(π Rs γs)2, p0 is power, Rs 

and γs are radius of the output aperture and source 
divergence angle, respectively; r = |r|, r = (x, y) are 
transverse coordinates; γ = (n∧z0) is the angle between 
the direction n and OZ axis. 

 
a 
 

 
b 

 

 

FIG. 1. Lidar geometry:   d < R
r
 (a); d > R

r
 (b). 
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Further, let us suppose that the sensitivity 
function of the receiving system with respect to spatial 
and angular coordinates D(r, n) is also of a stepwise 
form and, for a receiver with circular symmetry and the 
optical axis coinciding with OZ can be represented in 
the form similar to Eq. (1) 

D(r, n) = Σ(r, Rr) Ω(γ, γr) , (3) 

where Rr and γr are radius of the input aperture and the 
receiver field-of-view angle. 

Let the position of the receiving aperture center be 
determined by the radius-vector d on the plane z = 0. 
Then, if the medium is irradiated by a δ-pulse source 
with unit energy, the expression for power of a lidar 
signal coming to the input of the receiving system at 
time t can be written as a two-dimensional convolution 
on the plane z = ct/2 (Refs. 2 and 3): 

P(t) = 
c

2 μπ ⎝
⎛

⎠
⎞ct

2 ⌡⌠    ⌡⌠
S

 Es(r, z) Er(d $ r, z) dr ,  (4) 

where c is light speed; μ
π
(z) is backscattering 

coefficient; Es(r, z) and Er(r, z) are spatial irradiances 
created in the medium by a stationary source with 
radiance distribution at the input to the medium 
I0(r, n) given by Eq. (1) and a fictitious source with 
radiance distribution D(r, n) given by Eq. (3), 
respectively. The function E(r, z) can be calculated in 
the small-angle approximation of the radiation transfer 
theory by equations presented in Ref. 4. Using the 
properties of the two-dimensional Fourier transform for 
a function with circular symmetry and the convolution 
theorem, we can write equation (4) in the following 
form in the single-scattering approximation4: 

P(z, d, γs, Rr, γr) = F ⎝
⎛
⎠
⎞c

2  μ
π
(z) z$2 e$2τ(z)

 , (5) 

where the factor F = 4π 
Rr

 

γr
γs

 G(d, z γs, Rr, z γr) 

describes the lidar signal as a function of geometrical 
parameters of the sounding scheme and it can be 
defined as a lidar geometrical factor. For stepwise 
apertures, the function G(d, z γs, Rr, z γr) can be 
represented as an integral (A10) (see Appendix) with 
the following substitution of parameters: r = d, a = z γs, 
b = Rr, c = z γr. 

It is evident that direct calculation of the function 
G(d, z γs, Rr, z γr) by Eq. (A10) is a very tedious 
problem. A way to transform the integral (A10) to the 
form (A13) more convenient for analysis and 
calculations is described in the Appendix. 

Substituting the values r = d, a = z γs, b = Rr, c = z γr 
into the transformed expression (A13) and taking into 
account that the function B(ν, z γs, z γr) entering into it 
equals zero for ν ≥ z γs + z γr, let us write the following 
expression for the function G(d, z γs, Rr, z γr), which 
determines behavior of the lidar geometrical factor: 

G(d, z γs, Rr, z γr) = 

= 
⌡⌠
0

z γ
s
+z γ

r

  A(ν, d, Rr) B(ν, z γs, z γr) ν dν . (6) 

Since the functions A(ν, d, Rr) (A1) and 
B(ν, z γs, z γr) (A6) forming the integrand in Eq. (6) 
can be expressed in terms of elementary functions and 
integration limits are finite, calculation by the Eq. (6) 
is a simpler problem. 

 
2. ANALYSIS OF THE GEOMETRICAL FACTOR 

 
Equation (6) can be further simplified under 

certain relations between the parameters in the 
integrand. For definiteness, we assume that γr > γs. 
This makes it possible to divide the integration domain 
in Eq. (6) into two parts and present the integral as a 
sum 

G = 
⌡⌠
0

z γ
r
$z γ

s

 A(ν) B(ν) ν dν + 

+ ⌡⌠
z γ

r
$z γ

s

z γ
r
+z γ

s

   A(ν) B(ν) ν dν = G1 + G2 . (7) 

Decomposition of the function G given by Eq. (7) 
into summands implies the corresponding decomposition 
of a lidar signal P(z) = P1(z) + P2(z). According to 
Eqs. (A8) and (A9), the function B(ν, z γs, z γr) in the 
first integral of Eq. (7) is constant what permits us, 
taking into account Eq. (A7), to write 

G1 =  

γs
 

2γr
 ⌡⌠

0

z γ
r
$z γ

s

   A(ν, d, Rr) ν dν = 

= 
z

 

γs
2 γr

 (γr $ γs) B(d, z γr $ z γs, Rr) . (8) 

So, on the base of Eq. (A8), for the component 
P1(z) of a lidar signal we have 

P1(z, d, γs, Rr, γr) = ⎝
⎛
⎠
⎞c

2  μ
π
(z) × 

× e$2τ(z) z$2 [UR
r

(d)**Uzγ
∼

r

(d)] , (9) 

where γ∼r = γr $ γs. With substitution of γ∼r for γr, 
Eq. (9) describes a lidar signal for a simplified model 
with a point mono-directed source.5 

Let us dwell on the structure of the lidar signal 
component P1(z) given by Eq. (9). In the far zone of 
reception (see Fig. 1) which is of the most practical 
interest, as a rule, for 
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z > z1 = (Rr + d)/γ∼r (10) 

the lidar signal P1(z) is defined by the equation  

P1(z) = (c/2) μ
π
(z) z$2 Sr e

$2τ(z) , (11) 

where Sr = πRr

2 is the area of the receiving aperture. As 
follows from Eq. (10), if γs → γr, this case can be 
realized only at infinity. 

In the near zone of reception which is defined by 
the condition 

z < z4 = |Rr $ d|/γ∼r , (12) 

for d > Rr we obtain P1(z) = 0, and for d < Rr 

P1(z) = (c/2) μ
π
(z) Ω

∼
r e

$2τ(z) , (13) 

where Ω
∼

r = π γ∼r

2 can be considered as effective solid 
angle of reception. 

In the intermediate zone 

z4 < z < z1 (14) 

the geometrical factor F = UR
r

(d)**Uzγ
∼
r

(d) for the 

signal P1(z) is calculated with use of the last formula 
of Eqs. (A9). The family of generalized dependences 

F/(πRr

2) versus the dimensionless variable ρ = z γr /Rr 
is presented in Fig. 2 for different values of the 
parameter η = d/Rr. Curve 1 in Fig. 2 corresponds to 
the conjoint sounding scheme (d = 0). The part of 
curve 1 to the left of the point l1(ρ < 1) refers to the 
near zone, while points placed on the straight line 

F/(πRr

2) = 1 to the right of the point M1 refer to the 
far zone. The length of the intermediate zone vanishes 
in the conjoint sounding scheme. With increase of η 
from 0 to 1, the boundary of the near zone displaces 
along the curve 1 towards the point ρ = 0 (points M2, 
M3 ...) and the near zone disappears at d = Rr (curve 
5). With further increase of η > 1, the parts of the 
abscissa, where the function F vanishes, correspond to 
the near zone. 
 

 
FIG. 2. Parametric family of the geometric factor 
F(ρ)/F

max
, ρ = z γr/Rr at different values of the 

ratio η = d/Rr; η = 0; 0.25; 0.5; 0.75; 1.0; 1.5; 2.0; 
2.5; 3.0 (curves 1–9). 
 

Let us briefly dwell on the second summand in 
Eq. (7) 

G2 = ⌡⌠
z γ

r
$z γ

s

z γ
r
+z γ

s

   A(ν, d, Rr) B(ν, z γs, z γr) ν dν. (15) 

Its importance increases with increase of γs because 
G1 → 0 when γs → γr. According to Eqs. (A2) and 
(A5), the function A(ν, d, Rr) = 0 if ν ≥ d + Rr The last 
condition is always true, if the lower integration limit 
in Eq. (15) 

z γr $ z γs ≥ d + Rr . (16) 

However, the restriction (16) is equivalent to 
assignment of a boundary of the far zone for the 
integral G1. Therefore, G2 = 0 in the far reception zone 
and the lidar signal P(z) = P1(z) given by Eq. (11). 
Another situation for which A(ν, d, Rr) = 0 is realized 
in the case ν ≤ |d $ Rr|, d > Rr.  This is possible when 

z ≤ z6 = |d $ Rr| / (γr + γs) . (17) 

The last condition defines the near zone for the 
integral G2 given by Eq. (15) (see Fig. 1). In this zone 
G2 = 0 and P(z) = 0 for d > Rr. Note that the 
boundaries of the near zones for G1 and G2 (points z4 

and z6 in Fig. 1) do not coincide. For d < Rr, 

A(ν, d, Rr) = R r

$1 in the near zone (17) and, based on 
Eq. (A16), we can write the expression 

G = z2 γr γs/(4 Rr) (18) 

for the integral G given by Eq. (6) and 

P(z) = (c/2) μ
π
(z) Ωr e

$2τ(z)  (19) 

for the lidar signal. 
The integral G2 is calculated by the general 

equation (15) in the interval z6 < z < z1. 
 

3. CONCLUSION 
 
This study of the analytical expression obtained 

for the geometrical factor of a lidar in the small-angle 
approximation for stepwise apertures demonstrates that 
the sounding path can be divided into characteristic 
domains or zones depending on the relation between 
parameters of the lidar transceiving system. They are 
near, intermediate, and far zones. Calculations that 
take into account the geometry of a lidar experiment 
can be considerably simplified within such zones. The 
expressions for transformation of integrals of products 
of the Bessel functions to the expressions depending on 
the elementary functions form the basis of this analysis. 
Application of these expressions facilitates analysis and 
physical interpretation of the results what causes their 
usefulness in solving other problems of optics. 
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APPENDIX 

INTEGRALS OF PRODUCTS OF BESSEL 
FUNCTIONS 

In this section, we present the expressions for some 
integrals that are necessary in analysis of the lidar 
geometrical factor. 

1. Let us consider the following auxiliary integral 
of a product of the Bessel functions: 

A(r, b, a) = ⌡⌠
0

∞

 J0(rω) J0(bω) J1(aω) dω . (A1) 

It can be shown that the geometrical sense of the 
integral (A1) is simple: its value is proportional to two-
dimensional convolution of the functions 

A(r, b, a) = (2πab)$1 Ua(r)**δ(r $ b),  (A2) 

where Ua(r) is the unit step function in the plane 
XOY, 

Ua(r) = 
⎩⎪
⎨
⎪⎧1, 0 ≤ r < a,  r = x2 + y2,

0, r > a;
 (A3) 

δ(r) is the Dirac delta function. The proof of this 
statement is based on the convolution theorem, 
properties of the Fourier transforms for generalized 
functions, and the relation 

⌡⌠
0

a

 r J0(ωr) dr = 
a J1(ωa)

ω  ,  (A4) 

which is well known in the theory of Bessel functions. 
In its turn, using the integration technique for 

expressions containing the delta function on a plane,6 
we can obtain the expression for the convolution 
Ua(r)**δ(r $ b) in terms of the elementary functions 

Ua(r)**δ(r $ b) = 

⎩
⎨
⎧

0, r ≥ a + b,

0, r ≤ |a $ b|,  a < b,

2bπ, r ≤ |a $ b|,  a > b,

2bα, 0 < |a $ b| ≤ r ≤ a + b,

 

 (A5) 

where α is the angle opposite the side a in a triangle 
with sides a, b, and r (Fig. 3). The relations (A5) 
mean that the convolution Ua(r)**δ(r $ b) numerically 
equals the length L of the arc formed by intersection of 
two circumferences with radii a and b, and the distance 
r between the centers. 

Thus, the integral A(r, b, a) given by Eq. (A1) 
can be presented in terms of the elementary functions. 

2.The following step is to obtain the expression for 
the following integral of a product of the Bessel 
functions: 

B(r, b, a) = ⌡⌠
0

∞

 ω$1J0(rω) J1(bω) J1(aω) dω .  (A6) 

 

 
 

FIG. 3. Geometrical interpretation of parameters in 
the integrals À(r, b, a) given by Eq. (A1) and 
B(r, b, a) given by Eq. (A6) 

 
The integral b (r, b, a) from Eq. (A6) is connected 

with the integral A(r, b, a) from Eq. (A1) by the 
expression 

⌡⌠
0

b

 A(r, b′, a) b′ db′ = b B(r, b, a) , (A7) 

which validity is easily verified by the substitution (A4). 
On the other hand, taking into account the representation 
for the function A(r, b, a) as Eq. (A2), the expression for 
the integral b (r, b, a) from Eq. (A6) in the form5 

B(r, b, a) = (2πab)$1 Ub(r)**Ua(r) (A8) 

follows from Eq. (A7). 
Thus, the integral b (r, b, a) in Eq. (A6) is 

proportional to the two-dimensional convolution of the 
circles with radii a and b with centers spaced apart at a 
distance r. As follows from the geometrical 
considerations, the convolution is equal to the area of 
the circles intersection (hatched area in Fig. 3) and 
determined by the equations 

Ua(r)**Ub(r) = 

= 

⎩
⎨
⎧

0, r ≥ a + b,

π a2, r ≤⏐a $ b⏐, a < b,

πb2, r ≤⏐a $ b⏐, a > b,

a2
 β + b2

 α $ ab sinγ, 0 <⏐a $ b⏐≤ r ≤ a + b,

 (A9) 

where α, β, and γ are triangle angles opposite the sides 
a, b, and c, respectively. 

3. In conclusion, let us consider the integral of a 
product of the four Bessel functions of zero and first 
orders 
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G(r, a, b, c) = ⌡⌠
0

∞

 ω$2 J0(rω) × 

× J1(aω) J1(bω) J1(cω) dω . (A10) 

The function G(r, a, b, c) is symmetrical with 
respect to rearrangement of the arguments a, b, and c. 
Relying on the results obtained above and using the 
convolution theorem for functions with circular 
symmetry, the integral G(r, a, b, c) from Eq. (A10) 
can be represented in the following form: 

G(r, a, b, c) = (2πa)$1 Ua(r)**B(r, b, c) , (A11) 

or, taking into account Eq. (A8), 

G(r, a, b, c) = 
Ua(r)**Ub(r)**Uc(r)

(2π)2 abc
 . (A12) 

Finally, a more convenient representation for 
practical calculations has the form 

G(r, a, b, c) = ⌡⌠
0

∞

 A(ν, r, b) B(ν, a, c)ν dν , (A13) 

which can be verified by substitution of the functions 
A(ν, r, b) from Eq. (A1) and B(ν, a, c)  from (A6) 
with allowance for the relation 

⌡⌠
0

∞

 J0(νω) J0(νω′) νdν = 
1
ω′ δ(ω $ ω′). (A14) 

In particular, for r = 0, the relation 

G(r = 0, a, b, c) = ⌡⌠
0

∞

 ω$2 J1(aω) J1(bω) J1(cω) dω = 

= b$1
⌡⌠
0

b

 B(ν, a, c) νdν (A15) 

follows from Eq. (A13) in view of Eqs. (A2) and (A5). 
Based on Eq. (A4) and the convolution theorem, we 
can obtain the simple equation 
G(r = 0, a, b, c) = ab/(4c),  c ≥ a + b . (A16) 
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