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The problem of the resonance build-up of surface oscillations in transparent 

liquid weakly viscous particles of an arbitrary size under the action of modulated 

laser radiation is investigated theoretically.  A relation is found between the 

amplitude of the drop surface deformation and the modulation frequency of acting 

radiation for different values of a particle radius.  The characteristics of forced 

oscillations at resonance excitation are studied.  The width of the resonance 

characteristical curve of surface oscillations was found to increase as the particle 

size decreases and the liquid viscosity increases.  The problem of light scattering on 

small surface oscillations of liquid particles is numerically investigated.  It is 

shown that the maximum modulation of scattered light at the frequency of the 

fundamental harmonic of surface waves occurs in the direction normal to the 

incident radiation, as well as in the direction of the primary rainbow. 
 

INTRODUCTION 

 
An intense light field acting on a liquid dielectric 

particle can give rise to deformation of the particle 
surface.1  The ponderomotive forces are responsible for 
this phenomenon. The magnitude of the ponderomotive 
forces is proportional to the squared electric field 
intensity of a light wave inside droplets.6  Variation of 
the intensity of radiation acting on a liquid particle 
produces relaxation oscillations of the particle surface.  
When using the amplitude-modulated laser radiation, 
modulation frequency of which coincides with one of 
the natural vibrational frequencies of a droplet, the 
resonance build-up of these oscillations is possible.2,5 

The occurrence of the resonance oscillation mode 
of the surface of liquid particles, the size of which is 
small as compared to the radiation wavelength 
(a0 << λ, where a0 is the droplet radius, λ is the 
wavelength of incident radiation), was reported in 
the literature.5 Reference 2 derives the analytical 
expression for the amplitude of resonance oscillations 
and gives the estimates for the case of homogeneous 
distribution of the light field inside droplets. 
However, for the case of radiation interaction with 
optically large particles (a0 >> λ) under the 
conditions, when the essentially inhomogeneous 
distribution of an electromagnetic field takes place, 
the quantitative results were not obtained. 

As known, the natural frequency of mechanical 
oscillations of a spherical droplet is uniquely connected 

with the droplet size and physical properties of a 
liquid.7  Acting by laser radiation upon a polydisperse 
drop aerosol and varying the modulation frequency of 
the acting radiation, we can, in principle, provoke a 
resonance response of one or another group of particles. 
Thus, when measuring the natural frequency of droplets 
in an experiment, it becomes possible to determine the 
size distribution function of aerosol particles, as well as 
the viscosity and the surface tension coefficient of a 
liquid. 

This procedure was approved experimentally in 
Ref. 4, and it has demonstrated the real possibility to 
obtain the information about the drop aerosol 
microstructure by irradiating the aerosol with a 
modulated laser radiation. 

However, the direct interpretation of the results 
obtained in Ref. 4 is problematic due to the lack of a 
priori information on characteristics of resonance 
ponderomotive oscillations of droplets in an intense 
light field.  The goal of this investigation is to obtain 
the dependence of the amplitude of resonance surface 
oscillations of a liquid particle of an arbitrary size on 
the temporal parameters of acting radiation.  The other 
important problem is to derive and study numerically 
the expression for the intensity of a light wave 
scattered on an oscillating droplet, what can serve as a 
basis for simulating the spectroscopy effect of aerosol 
particle sizes, which is based on phenomenon of the 
Raman scattering of light on droplet surface 
oscillations. 
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RESONANCE EXCITATION OF SURFACE 

OSCILLATIONS OF A LIQUID TRANSPARENT 

PARTICLE BY LASER RADIATION 

 
The general statement of the problem on 

deformation of a liquid transparent droplet in a light 
field is given in Refs. 1$3.  It includes the dynamics 
equations of incompressible liquid written with regard 
for the ponderomotive forces. 

The spatiotemporal evolution of droplet surface 
deformations is given by the dynamic boundary 
condition, which is in essence a modified analog of the 
Laplace formula1: 
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Here p, T, σ, ρa, and η are pressure, temperature, 
the surface tension coefficient, the density, and the 
dynamic viscosity of a liquid, respectively; p1 is the 
outer (atmospheric) pressure; R1 and R2 are the major 
radii of surface curvature; vi,k are the liquid velocity 
components; εa is the absolute dielectric constant of a 
particle matter; E(θ, ϕ) is the electric field intensity 
on the particle surface; xi,k are the coordinates; n is the 
vector of the external normal to the particle surface.  
The value of a step of the normal component of electric 
field tension on the particle surface, determining the 
surface density of the ponderomotive forces, is given by 
the following expression6: 
 

f(θ,ϕ) = 
εa $ 1

8π  [(εa $ 1) (E(θ,ϕ) n)2 + E2(θ,ϕ)], 

 

where θ, ϕ are the spherical coordinates. 
From Eq. (1) or from the equations of energy 

balance of a deformed particle7 we can derive the 
equation of small oscillations of weakly viscous 
liquid.2,3 This equation serves as a base for theoretical 
analysis of droplet behavior in the laser radiation field. 

The value of the particle surface shift is 
represented as the expansion in terms of the spherical 
functions: 
 

a(t,θ,ϕ) $ a0 = ξ(t,θ,ϕ) = Re {Σ
l; n

 ξln(t) Yln(θ,ϕ)},  (2) 
 

where ξln are the expansion coefficients of the particle 
surface shift; a0 is the radius of an unperturbed droplet; 
Yln(θ,ϕ) are the spherical functions. 

Now we consider the oscillations symmetric by a 
spherical angle ϕ (this assumption is justified since the 
field intensity inside a droplet irradiated by a plane 
wave is also symmetric about the angle ϕ).  In this 
case, for the expansion coefficients of the surface shift 
the following set of equations is valid 

d2ξl

dt2
 + 

2
tl
 
dξl

dt
 + Ω2

l ξl = 
l fl(t)
a0 ρa

,   l = 2, 3, ..., (3) 

 
where 

fl(t) = ⌡⌠
0

π

f(t, θ)Y*
l0(θ)sin θ dθ 

 
are the coefficients of expansion of the function f(t, θ) 
in terms of spherical harmonics; 
 

tl = a2
0/[2(2l + 1)(l $ 1)ν]  (4) 

 
is the characteristic damping  time of oscillations due to 
viscous forces; ν = η/ρa is the kinematic viscosity of a 
liquid; 
 

Ωl = l (l + 2) (l $ 1) σ/ρa a
3
0  (5) 

 
are the natural oscillation frequencies of a droplet. 

The set of equations (3) is supplemented with the 

initial conditions at t = 0: ξl = 0, 
dξl

dt
 = 0. 

Now we consider the problem of excitation of 
ponderomotive oscillations in a droplet by harmonic 
modulated radiation.  The time dependence fl(t) is 

given in the following form: fl(t) = f0l(a0, λ)× 
×(1 $ cos Ωt), t ≥ 0, where f0l(a0, λ) is the time-

independent coefficient determined by a specific form of 
the electric field on the particle surface; Ω is the 
modulation frequency of acting radiation.  For the 
steady oscillations (t >> tl) from Eq. (3) we obtain the 
solution well-known in the theory of oscillations8: 
 

ξl(Ω) = 

f 0ll cos[Ωt + arctan 
2t$1

l
 Ω

Ω2 $ Ω2
l

 ]

ρa a0[(Ω2 $ Ω2
l)

2 + 4t$2
l  Ω2]1/2

 .  (6) 

 
At resonance (Ω = Ωl) 
 

ξl(Ω) = 
f 0l l sin Ωt

2ρa a0 Ωl t
$1
l

 .  (7) 

 

As noted above, values of the coefficients f 0l are 

determined by the electromagnetic field distribution on 
the droplet surface.  For large particles, this 
distribution has a sharply inhomogeneous structure with 
a great number of peaks and a large scatter in values. 

That is why f 0l can be found only from numerical 

calculations. 
At (tl Ωl)$2 << 1, the relationship in the form of 

Eq. (6) determines the resonance curve with the 
halfwidth 
 

Δl ≈ 2 3/tl .  (8) 
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Figure 1 shows the relative amplitude 
$ξ = ξ/a0 of 

steady oscillations of the droplet surface versus the 
modulation frequency of acting laser radiation Ω. The 
resonance peaks in the function 

$ξ(Ω) correspond to the 
cases of coincidence of the modulation frequency and 
the droplet natural frequencies.  In this case, the shift 
amplitude is maximal for the fundamental vibrational 
mode l = 2. 

 
FIG. 1.  The relative amplitude of steady oscillations 
for a water droplet with a0 = 25 μm vs. the modulation 
frequency of the continuous laser radiation with 
I0 = 105 W/cm2. The maximum values correspond to 
the droplet resonance frequencies of different orders. 
 

For small droplets (a0 << λ) the internal light field 
can be considered practically homogeneous.  In this 
case, 
 

E(a0) = 
3

2 + εa
 E0; 

f(θ) = 
εa $ 1

8π [(εa $ 1)E2
0
 sin2θ + E2

0], 

 
where E0 is intensity of the light field incident on a 
particle. 

Thus, for the coefficients f 0l we obtain2 

 

f 0l = $ 
3E2

0

2 5π
 
(εa $ 1)2

(εa + 2)2 .  (9) 

 
Substituting Eqs. (4), (5), and (9) into Eq. (7) we 
obtain 
 

ξ2 = 
3E2

0

40 5π
 
(εa $ 1)2

(εa + 2)2 
=5/2
0

σ ρaν
,  (Ω = Ω2) .  (10) 

 
Now we consider the situation, when a liquid 

particle is subject to a succession of short laser pulses 
with the repetition rate equal to one of the resonance 
frequencies of droplet oscillations.  The typical form 
of the amplitude-frequency characteristics close to the 
fundamental oscillation mode Ω2 for the particles of a 
different radius is given in Fig. 2.  Calculations of 
the function ξ(Ω) were made numerically using the 

set of equations (3) with the Runge-Kutta numerical 
differentiation method of the fourth order. 

 
FIG. 2.  The amplitude of steady oscillations vs. the 
pulse repetition rate of the laser radiation at 
I0 = 107 W/cm2 and tp = 10 ns for different size of a 
droplet: a0 = 15 (1), 11 (2), and 5 μm (3). 
 

Figure 2 shows that as the particle size increases, 
the resonance curve becomes narrower with 
simultaneous increase in its Q-factor.  This is connected 
with the growth of the characteristic damping time of 
oscillations due to viscous strengths. This result well 
agrees with Eq. (8). 

The analytical solution of the problem under study 
for the sequence of laser pulses is complicated. 
Therefore, for qualitative study of the dependence of 
the droplet oscillation amplitude on the power and time 
parameters of pulse action, let us consider one pulse 
with the time profile given in the form 
 

I(t) = I0 
t
tp

 exp {$ 
t
tp
}.  (11) 

 
Here I0 and tp are the pulse peak intensity and the 
characteristic duration, respectively. Having substituted 
Eq. (11) into the right-hand side of Eq. (3) and having 
solved this equation by the method of indefinite 
coefficients, we obtain 
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8π l I0 f 
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where c is the light speed, na is the refractive index of 
a liquid. 

In the limit of œshortB acting pulses (tp << Ω
$1
l , tl) 

we have 
 

ξl(t) ≈ 
8π l I0 f 

0
l tp

cna ρa =0 Ωl
 exp($t/tl)sin(Ωl t), 

t > tp . (13) 
 
It follows from Eq. (13) that the surface of an 
oscillating droplet shifts by the harmonic law with the 
natural frequency Ωl damping exponentially in time 

with the constant t$1
l . 

In the opposite situation, i.e., in the case of œlongB 

pulses (tp >> Ω
$1
l , tl) the solution of Eq. (12) 

transforms to the form 
 

ξl(t) ≈ 
8π l I0 f 

0
l

cna ρa =0 (1/tl2+Ωl
2)

 
t
tp

 exp($t/tp), 

t ≤ tp .  (14) 
 
It is clearly seen that in this case, the droplet oscillations 
are lacking, and the time dependence of the droplet 
surface shift is determined by the shape of a laser pulse. 

Let us now pass to the discussion of the results 
obtained by numerical solution of the set of 
equations (3). In the numerical experiments, the 
characteristics of water droplet oscillations were 
studied under the effect of either continuous 
(λ = 0.69 μm) radiation modulated with the frequency 
Ω or a sequence of laser pulses within a wide range of 
the relative pulse duration q = 2π/(tp Ω). 

The time of establishment of stationary oscillations 
as a function of the particle size under modulated 
action was studied. This study has shown that as the 
droplet size increases, the time of establishment of the 
stationary mode in oscillations tst increases relative to 
the period of the fundamental oscillation T2 = 2π/Ω2.  
Thus, for small-sized particles (a0 ≤ 1 μm) the natural 
oscillations become steady for practically a single 
period: tst ≈ T2, while at a0 ≥ 15 μm already four or 
five periods are required.  The same increase in the 
response time of oscillations is also observed for the 
pulse action.  B esides, in this case with the increase of 
the droplet size, the type of oscillations varies as well.  
The shape of oscillations becomes rather complex, and 
the harmonic components of oscillations at the 
resonance frequency are not clearly seen.  This can be 
explained by the fact that with increasing the particle 
size, the frequency difference between adjacent modes 
decreases. 

From Eq. (5) it follows that the frequency 
interval between the adjacent n and (n + 1) modes is 
expressed as 
 
 

ΔΩn = 
σ n

ρa a
3
0

 ( (n + 1)(n + 3) $ (n $ 1)(n + 2)) 

 
and, hence, a great number of normal modes participate 
in the formation of the particle surface disturbance.  
Thus, the deformation oscillations of large particles are 
the superposition of oscillations at different natural 
resonance frequencies. 

As noted above, with the decrease in the droplet 
radius the resonance curve broadens with simultaneous 
decrease in its maximum value (see Fig. 2), what is 
connected with reduction of the relaxation time of 
oscillations due to the viscosity forces. 

Let us now estimate the particle size a*
0 at which a 

particle in fact loses its resonance characteristics.  
Toward this end, we determine the conditions when the 
amplitudes of the particle surface shift at the resonance 
Ω = Ωl and away from it are equal.  This condition is 

true when the value of the droplet radius a0 ≤ a*
0 where  

 

=*
0 = 25 ρ=ν2/(2σ). 

 
Thus, for water at ρa = 103 kg/m3, ν = 10$6 m2/s, 

σ = 7.42⋅102 H/m we obtain =*
0 ≈ 0.2 μm. 

Figure 3 shows the maximal amplitude of forced 
oscillations of a water droplet with a0 = 10 μm as a 
function of the radiation intensity in the pulse 
(tp = 10 ns) and continuous (modulated at the 
frequency Ω = Ω2) radiation modes.  From this figure, 
we see that this dependence is linear, that also follows 
from the analytical solution (12). Differences in the 
amplitudes of the droplet surface shift at the same 
values of I0 are caused by the difference in the energy 
transmitted by a light wave for one period in the pulse 
and harmonic modes. 

 
FIG. 3.  The amplitude of steady oscillations of a 
water droplet with a0 = 10 μm vs. the laser radiation 
intensity for the cases of modulated (1) with the 
frequency Ω = Ω2 and pulse mode (2). 
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FIG. 4. The maximum shift of a surface of water 
particle with a0 = 3 μm (1) and 15 μm (2) vs. the 
relative pulse duration of the acting radiation at the 
constant peak intensity in pulses I0 = 107 W/cm2. 
 

Figure 4 shows the maximum relative shift of the 
surface of droplets with different radius as a function of 
the relative pulse duration q. The curves in this figure 
are plotted assuming that the peak intensity of a laser 
pulse I0 is constant.  With increase of the relative pulse 
duration, the amplitude of a surface shift decreases 
linearly for q > 1, that also follows from the analytical 
solutions (13) and (14); and for q < 1 it passes into the 
saturation with a small maximum observed at q ≈ 1 
what corresponds to coincidence of the pulse duration 
and the period of resonance oscillations at the 
fundamental frequency. 

 
SURFACE RAMAN SCATTERING AT RESONANCE 

OSCILLATIONS OF DROPLETS 

 
Oscillating droplets are the scatterers with a 

dynamically varying surface shape.  It is evident that 
the intensity of radiation scattered on such particles 
will also vary in time.  The question arises: What will 
be the amplitude of these pulsations and what are the 
best angles for receiving of this signal, from the 
viewpoint of separating out its dynamic component. 

The problem under analysis may be formulated as 
the problem of emission of a spherical volume with the 
given distribution of electromagnetic field into the 
surrounding volume.3  Figure 5 shows the geometry of 
the problem. 

Let us assume that the plane electromagnetic wave 
E0

∼
 = E0eiωt $ ik0z is incident (in the positive direction of 

the axis z) on a drop, surface oscillations of which are 
excited by intense radiation also directed along the axis 
z.  It is necessary to find the field at the point with the 
radius vector r.  We proceed from the Helmholtz 
equation for the vector potential A(r, t) of an 
electromagnetic field 
 

∇2 A(r, t) + 
ω2

εa
 A(r, t) = $ Ja (r, t) ,  (15) 

under the condition: div A(r, t) = 0.  Here 

Ja = εa 
∂E(r,t)

∂t  is the density of the polarization current 

induced by the particle internal field. 

 
FIG. 5.  Geometry of the problem.  A spherical 
particle is at the origin of the Cartesian coordinate 
system.  The spherical coordinates (r′, θ′, ϕ′) are also 
shown; M is the observation point. 
 

The components of the unknown electromagnetic 
field are expressed in terms of the vector potential as 
 

H(r, t) = rot A(r, t) ;   E(r, t) = $ 
∂A(r, t)

∂t . 

 
The solution of Eq. (15) is known from Ref. 9.  

Then the complete electric field E(r, t) can be found 
from the ratio 
 

εa E(r,t) = E0 eiωt $ i k0 z + 
 

+ rot rot ⌡
⌠

Va

(εa $ 1) E(r′,t) eikR

4πR
 dr′, 

 
where k0 is the wave number outside the particle; 

k = εak0, R = |r $ r′| is the distance between the 
observation point and the elementary source in the 
particle volume.  The first term in the right-hand side 
of the equation is the incident field, and the second 
term is the electric field induced by the polarized 
elements of the particle volume.  The integration is 
made over the droplet volume Va. 

The further consideration is only for the scattered 
field.  In this case in the far zone (kr >> 1), we have 

 

Es(r, t) ≈ 
k2
0(εa $ 1)eiωt

4πr ⌡⌠
Va

E(r′, t) eikr′cos γdr′.  (16) 

 

Here γ is the angle between the vectors r and r′, 
r = ⏐r⏐. 

For weak perturbations of the droplet surface 
ξ << a0 the integral over the volume of a deformed 
particle can be represented as a sum of integrals 
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⌡⌠
Va

E(r′, t) eikr′cos γdr′ = ⌡⌠
Va0

E(r′, t) eikr′cos γdr′ + 

+ ⌡⌠E(r′, t) eikr′cos γdo′ ⌡⌠
a0

a(θ,ϕ)

r′2 dr′ ,  (17) 

 

where Va0
 is the volume of an unperturbed sphere; 

do′ = sin θ′ dθ′ dϕ′. E(r′, t) can be set equal to  
its value in the absence of perturbations of the spherical 
surface Ea(r′, t). Then the expression (16) is 
transformed to the form 
 

Es(r, t) ≈ 
k2
0(εa $ 1)

4πr
eiωt [⌡⌠

Va0

E(r′, t) eikr′cos γdr′ + 

+ a2
0⌡⌠Ea(a0, θ′, ϕ′, t) eikr′cos γ × 

× Re {Σ
l; n

ξln(t) Yln(θ′, ϕ′) ei
 

Ωl
 

t do′}] .  (18) 

 
The first term in the right-hand side of Eq. (18) 
describes the conventional elastic scattering at the 
frequency of the incident radiation ω.  The second term 
is the Raman scattering with frequencies ω ± Ωl at 
particle surface waves. 

Equation (18) results in the expression for the 
intensity written to the square terms 
 

Is(r,t) = 
c εa

8π Es(r, t) E*s(r, t) ≈ 

≈ ⎝
⎛

⎠
⎞k2

0(εa $ 1)

4πr

2

[S(r, t) S*(r, t) + 

+ 2S*(r, t) a2
0⌡⌠Ea(a0, θ′, ϕ′, t) eikr′cos γ × 

× Re {Σ
l; n

ξln(t) Yln(θ′, ϕ′) ei
 

Ωl
 

t do′}] ,  (19) 

 

where 
 

S(r, t) = 
c εa

8π ⌡⌠
Va0

E(r′, t) eikr′cos γdr′. 

 

Hence, it follows that the intensity of the scattered 
electromagnetic field at the Raman frequencies is 
proportional to the squared radius of a droplet and the 
amplitude of its surface deformations.  The time 
dependence Is(t) is determined by the superposition of 
oscillations at the droplet natural frequencies. 

If the intensity of acting radiation is modulated 
at a certain frequency Ω, then at Ω = Ωl a sharp 
increase of the Raman component of a scattered signal 
Is occurs due to the resonance behavior of ξl(Ω) (see 
Fig. 2).  As the modulation frequency Ω changes, 
every such peak of the intensity of the scattered 
radiation corresponds to the resonance build-up of 
oscillations in a particle of a certain size.  The 

square-law dependence of Is on a0 indicates that the 
increase in the particle size increases its contribution to 
the intensity of the scattered radiation. 

The numerical calculations of the angular 
dependence of the scattered signal intensity by Eq. (19) 
have shown that the relative change of the intensity as 
compared to the level of unperturbed (elastic) scattering 
at the frequencies of mechanical oscillations of a droplet 
is maximal in the direction perpendicular to the direction 
of the action, as well as in the direction of the angle of 
primary rainbow θ ~ 137°.  This determines the angular 
range for optimum reception of the dynamic component 
of the scattered signal.  The time dependence of intensity 
of the light scattered for several observation angles is 
given in Fig. 6. 

 
FIG. 6.  Time dependence of the intensity of the light 
scattered at an oscillating droplet with a0 = 20 μm 
under the action of the modulated radiation (Ω = Ω2, 
with I0 = 107 W/cm2) for different observation 
angles. 
 

The initial radius of a particle is a0 = 20 μm, a 
particle is subjected to continuous radiation modulated 
with the frequency Ω2 = 43 kHz at λ = 0.53 μm and 
I0 = 107 W/cm2. 

 

CONCLUSION 
 

The theoretical investigations of the amplitude of 
surface oscillations of transparent weakly viscous 
particles as a function of the modulation parameters of 
an acting radiation have shown the following. 

1. The dependence of the amplitude of surface 
deformation of transparent liquid weakly viscous 
particles on the modulation frequency of an acting 
radiation is of resonance character.  The decrease in the 
droplet radius and the increase in the liquid viscosity 
result in the growing width of the resonance curve of 
surface shifts. 

2. The intensity of the light scattered at the 
particle surface oscillations depends resonantly on the 
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modulation frequency of the acting radiation.  With the 
increasing size of a droplet, its contribution to the total 
intensity of the scattered radiation grows.  The 
intensity of the scattered radiation is maximal in the 
direction normal to the direction of the acting 
radiation, as well as in the direction of the angle of 
primary rainbow, since the modulation of the particle 
surface reaches its maximum just in these directions. 
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