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We consider here some aspects of the problem on applicability limits of Rytov 

approximation that is used for calculating turbulence-induced fluctuations. The 

errors of approximation are estimated by way of comparing the results calculated 

by Rytov with those obtained by numerically solving the parabolic equation. It is 

shown that the applicability range of interest strongly depends on the type of 

quantities to be calculated. Also, some aspects related to the singular behavior of 

the amplitude in the presence of phase dislocations are discussed. 
 

The Rytov’s approximate solution of the parabolic 
equation1 is a common approach used to calculate light 
wave fluctuations induced by weak atmospheric 
turbulence. It is normally assumed that this solution is 
valid while the so-called Rytov scintillation index  
β2

0 < 0.3 $ 1, Refs. 1$3. However, the applicability 
domain cannot be assessed correctly without the 
account of the type of a quantity to be calculated using 
this approximation. This means that, under same 
conditions of propagation and turbulence, the errors of 
approximation can be different for different quantities. 
The physical mechanism which affects the applicability 
domain of interest, can be considered as follows. The 
main advantage of Rytov’s approach is that it accounts 
for the effect of multiple scattering. However, it allows 
for this effect only partially and the prediction by 
Rytov’s approximation becomes wrong at the enhanced 
level of multiple scattering. So, one can expect that the 
applicability of Rytov’s approach to handling certain 
quantities is actually dependent on how strongly the 
multiple scattering affects the quantity of interest. In 
other words, the stronger some quantity is affected by 
the multiple scattering, the narrower is the 
applicability range of Rytov’s approach for this 
quantity. Below we outline this problem by comparing 
the results obtained by Rytov's approximation with 
those obtained from the simulation based on the 
numerical solution of the parabolic equation. Three 
statistical quantities are compared: the variance of the 
logarithm of amplitude, the variance of its first 
derivative, and the variance of its second derivative. 
These quantities are chosen for the following reasons. 
On the one hand, the small-scale atmospheric 
inhomogeneities produce the main contribution into the 
multiple scattering. At the same time, these 
inhomogeneities are mainly responsible for the behavior 
of the derivatives of the logarithm of amplitude. So, 
one can expect that, under the same propagation and 
turbulence conditions, the error of Rytov 
approximation increases with increasing order of the 
derivative. 

We restrict below our attention to the case of a 
plane monochromatic wave propagating through the 
turbulent atmosphere along a path with constant 
parameters. The refractive index fluctuations are 
assumed to be Gaussian and isotropic with the power 
spectrum Φn being as follows: 
 

Φn(i) = 0.033 q2
n i$11/3 exp ($i2/i

2
m), 

 
im = 5.92/l0,  (1) 
 

where q2
n is the refractive-index structure constant, and 

l0 denotes the inner scale of turbulence. 
The expressions proposed by Rytov for the 

variances of interest are: 
the variance <i2> of the logarithm of amplitude 
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the variance <i2
x> of the first derivative of the 

logarithm of amplitude  
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the variance <i 2
xx> of the second derivative of the 

logarithm of amplitude  
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where L is the propagation path length, k is the wave 

number, and D = 
Li

2
m

k
  is the wave parameter. 

The Eqs. (2)$(4) directly follow from the general 
expression for the correlation function of the logarithm 
of amplitude.1 

To estimate the errors of Rytov’s approximation 
for the above variances, we compare the approximate 
theoretical results (1)$(4) to those obtained by 
numerically solving the parabolic equation1 
 

2ik 

∂E(z, ρ)
∂z  + Δ⊥E(z, ρ) + 2k2 

∼
n(z, ρ) E(z, ρ) = 0, (5) 

 

where E denotes the complex wave field, ρ = (x, y) is 
the vector defined in a plane perpendicular to the 

direction of propagation, Δ⊥ = 
∂2

∂x2 + 
∂2

∂y2 
, and 

∼
n denotes 

the fluctuation component of the refractive index. 
Our method of simulation is similar to that 

presented in Ref. 4, so we do not describe it here 
referring the reader to this paper for details. Figure 1 
depicts the relative errors of approximation (in percent) 

for the variances of interest versus scintillation index β2
0 

given by Rytov’s formula 
 

β2
0 = 1.23 q2

n k
7/6 L11/6

. 

 

For each variance σ2, the relative error δ is 
calculated as 
 

δ = 100% | σ2
R $ σ2

S | /σ2
R , 

 

where σ2
R and σ2

S denote the Rytov’s and calculated 
magnitude of a given variance, respectively. The 
variances have been calculated for a sample of 100 
values. 
 

 
 

FIG. 1. Relative errors of Rytov’s approximation for 
three quantities: the variance <i2> of the logarithm of 

amplitude, the variance <i2
x> of its first derivative, 

and the variance <i 2
xx> of its second derivative. 

As one can see from Fig. 1, the behavior of the 
curves presented confirms our initial assumptions. 
Besides, another one, and more general, conception of the 
applicability region of Rytov’s approximation may be 
proposed. As was mentioned above, the multiple 
scattering which is only partially allowed for within this 
approximation is mainly produced by small-scale 
inhomogeneities. On the other hand, the inner scale is a 
quantity that actually determines the contribution coming 
from small-scale inhomogeneities into the refractive-index 
spectrum. Thus, we may assume that the stronger is the 
dependence on the inner scale of some quantity calculated 
using Rytov’s approximation, the narrower is the 
applicability limits of this result. 

In the above discussion we have presented the results 
of simulation made assuming conditions of weak-
turbulence. Under these conditions the variances of 
interest vary smoothly with the increase in Rytov’s 
scintillation index or, in other words, with the turbulence 
strengthening. However, as soon as the conditions start to 
approach to the strong-turbulence ones, one can observe a 
qualitatively different effect: a singular behavior of the 
variances of derivatives of the logarithm of amplitude 
related to the appearance of phase dislocations 
(vortices).5$10 

It is known6 that a necessary condition of phase 
vortex creation at some observation point is the 
occurrence of zero amplitude at this point. Up to now the 
main attention in the problem of dislocations has been 
paid to the phase singularities, while the statistical and 
topological properties of the amplitude in the presence of 
zero-amplitude points have remained practically beyond 
the scope of consideration. However, not only the phase, 
but also the amplitude demonstrates some unusual 
properties when the zero-amplitude points occur, namely, 
the amplitude derivatives are singular at these points too. 

Let E(x, y) = E1(x, y) + iE2(x, y) be a sample of 
the complex two-dimensional wave field and let us 
assume that the amplitude zero occurs at some point 
inside this sample. Introducing the Cartesian system of 
coordinates with the origin at this point, and expanding 
E1 and E2 into a series in the vicinity of the origin, and 
taking only linear terms, one can obtain the following 
expression for the amplitude A: 
 

A(x, y) = (E1xx + E1yy)2 + (E2xx + E2yy)2, (6) 
 

where E1x, E2x, E1y, and E2y denote the corresponding 
first partial derivatives of the field taken at the origin. 

As one can see from Eq. (6), the first derivative of 
the amplitude has a discontinuity at the origin, while 
the higher-order derivatives are singular. One can say 
that the amplitude rather "cuts" than "touches down" 
the zero plane at the point x = 0, y = 0. 

To support the latter conclusion, let us consider how 
the presence of zero-amplitude point affects the variance 

<i 2
xx> of the second derivative of the logarithm of 

amplitude and how this effect manifests itself in 
simulations. We are going to show that as soon as the 
first vortex appears inside the observation zone, the 
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variance <i 2
xx> tends to the infinity. To make further 

analysis simpler, let us consider the simplest case when 
E1x = E2y = 1 and E2x = E1y = 0 (a more general 
treatment is quite straightforward but it is not necessary 
for our consideration which is rather qualitative). By 
introducing the polar coordinates (ρ, ϕ) and using 

Eq. (7), we can present i 2
xx(ρ, ϕ), in the vicinity of zero-

amplitude point, as follows 
 

i
2
xx(ρ, ϕ) = 

cos2 (2ϕ)
ρ4  . (7) 

 

A contribution σ2
0 coming from the singularity (7) 

to the total variance <i 2
xx> can be estimated as follows. 

Let us plot a circular zone with the center at the zero-
amplitude point ρ = 0. Then, let ε and r be the inner 
and the outer radii of this ring, respectively. We can 
always choose such a small but finite r that the 
expansion (6) is valid inside the ring. Using Eq. (7), 

one can write the contribution σ2
0 associated with this 

zone as  

σ2
0 = lim

ε → 0

 
1

π (r2 $ ε2) ⌡
⌠

ε

r

 dρρ
ρ4  ⌡⌠

0

2π

dϕ cos2(2ϕ) = 

= lim
ε → 0

 
1

2r2 ε2 = ∞. (8) 

 
 

FIG. 2. Behavior of the variance <i 2
xx> of the second 

derivative of the logarithm of amplitude in the 
presence of phase dislocations. The top graph panel 

presents the value <i 2
xx> multiplied by the l

4

0
 (the 

forth degree of the inner scale), while the bottom 
one shows the dislocation density. 
 

 

So, when the wave field has a zero-amplitude 

point, the total variance <i 2
xx> tends to the infinity due 

to the contribution that comes from the vicinity of this 
point. Figure 2 shows how this effect manifests itself in 
simulations (the method of simulation is described in 

Ref. 11). One can see a sharp growth of <i 2
xx> as the 

dislocation density starts to be non-zero. In contrast to 

theoretical predictions, the simulated <i 2
xx> does not 

tend to the infinity due to the finite grid step used in 
the simulation. 

The above considered effect can be of certain 
importance when developing the theories of strong 
turbulence. As was shown in Ref. 11, the dislocations 
(or the zero-amplitude points) always occur under 
conditions of strong turbulence. This result, along with 
the above considerations, allows us to conclude that 
under conditions of interest the amplitude derivatives 
become singular. So, developing the theories of strong 
turbulence this effect should be taken into account. 
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