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The results of theoretical and experimental study of propagation and 

transformation of circularly symmetrical fields of TE vortices and linearly 

polarized azimuthally symmetric fields of TE and TM modes in a locally isotropic 

inhomogeneous medium of low-mode optical fibers are presented. The propagation 

constant for CV vortices as well as for TE and TM modes, as a scalar 

approximation of the wave equation, is shown to be fourfold degenerated with 

respect to topological charge and spirality. As a result of spin-orbital interaction in 

the eigenmodes field, the line of the propagation constant splits into four lines. The 

distance between the lines is equal to polarization corrections δβ to fields of 

eigenmodes. The form of the spin-orbit interaction operator is presented. The action 

of the operator onto fields of CV vortices, TE- and TM-modes is shown to induce 

topological birefringence in the locally isotropic medium of optical fibers. The 

birefringence manifests itself experimentally in the joint Rytov$Magnus effect. 

 

1. INTRODUCTION 
 

Optical vortices can carry both orbit and spin 
angular momenta in a free space. For a circularly 
polarized paraxial light beam with spirality σz 
(circulation direction of circular polarization) and 
topological charge l, the ratio of the z-component of the 
angular momentum flow to the z-component of energy 
flow equals1,2 

(l + σz)/ω (1) 

(ω is frequency; σz = ±1). It means that a light beam 
with l = +1 and σz = +1, interacting with a substance, 
can transfer double angular momentum, and a beam 
with l = +1 and σz = $1 (or l = $1 and σz = +1) has no 
angular momentum. 

It is evident that there is no interaction between 
orbit and spin parts of the angular momentum in a free 
space. However, spin-orbit interaction can arise in an 
optical vortex if propagation of a wave is bounded by a 
potential well (e.g., inhomogeneous medium or optical 
fiber). What physical properties correspond to the 
result of spin-orbit interaction in a light wave that is 
spread through optical fiber? On the one hand, it is 
well-known that, in spectra of substance atoms, this 
interaction splits energy levels3 and forms a fine 
structure of the spectrum. However, in a light wave, 
with comparatively small intensity, the energy 
spectrum is strictly determined by the spectrum of the 
radiation source. On the other hand, it is rightful to 
suppose that interaction of the orbit and spin parts of  
 

the angular momentum causes a certain non-holonomic 
perturbation of the electromagnetic field. Note that 
non-holonomic perturbation of the field results in the 
topological phase γT additional to the dynamic phase φD 
of the wave.4 Since the phase γT depends on the 
direction of path-tracing in the parameter space (in our 
case, on the sign of the topological charge) and on the 
direction of rotation of circular polarization, this 
topological addition to the phase of the light wave will 
œsplitB the propagation constant of the eigenmode of a 
œnon-disturbedB optical fiber. 

The aim of this paper is to study physical nature of 
the phenomenon of splitting of the polarization 

correction δβ to the scalar propagation constant β
∼
 for 

fields of optical CV vortices, TE and TM modes of a 
low-mode (l ~ 1) fiber.  

The second section of the paper presents the zero 
polarization correction to the scalar propagation 
constant. The correction is responsible for the œlevel 
splitB as the mean value of the operator of spin-orbit 
interaction in the field of optical vortices. In the third 
and the fourth sections the polarization correction is 
considered as the topological Berry phase of the field. 
The phase arises as a result of precession of the 
Poynting vector. The problem of topological 
birefringence of a locally isotropic low-mode fiber as a 
result of spin-orbit interaction is discussed in the fifth 
section. Particular examples demonstrate that the 
Rytov$Vladimirskii effect6,7 and the optical Magnus 
effect8,9 are exhibition of spin-orbit interaction. 
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2. THE OPERATOR OF SPIN-ORBIT 
INTERACTION 

 
Let us use the formal correspondence between the 

wave equation of light in a inhomogeneous medium and 
the Schrödinger equation, just as it is made in 
Refs. 10$12, and find out the operator that corresponds 
to the observed value of the polarization correction δβ. 

Let us write the vector wave equation for light in 
an inhomogeneous medium13 

[∇2
⊥ + n2(r) k2 $ β2] e⊥ = $ ∇⊥ [e⊥ ∇⊥ lnn2(r)],  (2) 

where the index ⊥ points to lateral components of the 
vectors, β is the propagation constant of eigenmodes in 
an optical fiber with a gradient profile of the refractive 
index, 

n2(r) = n2
co [1 $ 2 Δ f(r)],  (3) 

where Δ is the height of the profile, f(r) is the profile 
function. 

If the refractive indices of the core nco and 
cladding ncl are close, i.e., the parameter Δ is small, the 
equation (2) can be written in the form13 

[∇2
⊥ + n2(r) k2 $ β

∼2] e
∼
⊥ = 0  (4) 

as a first approximation of the perturbation theory. 
The equation (4) does not take into account 

polarization properties of the field and, for this reason, 
it is called a scalar wave equation. Vector properties of 
fields are taken into account by transformation of the 

scalar amplitude of the field e
∼
 → e and the propagation 

constant β
∼
 → β, so β = β

∼
 + δβ, where δβ is the 

polarization correction. 
The solution of the scalar wave equation (4) for 

the fields of axially symmetric fibers in a linearly 
polarized basis was presented in Ref. 13. The spectrum 
of eigenfunctions and eigenvalues of this equation was 
presented in Ref. 14 in the form of optical vortices. 
They can be represented as: 

1) directed circularly polarized CV 

iσ
σ l, m vortices 

which are subdivided into 
$ stable, topologically homogeneous vortices: 

CV 

σ
σ l, m = HE 

even
l+1, m + iσ HE 

odd
l+1, m 

(i = + 1, l ≥ 1, σ = ± 1, β1 = β
∼
 + δβ1), 

they are denoted as ⎪+ l; + 1> or ⎪$ l; $ 1>; 
$ stable, topologically inhomogeneous vortices: 

CV 

$σ
σ l, m = EH 

even
l$1, m + iσ EH 

odd
l$1, m 

(i = $ 1, l > 1, σ = ± 1, β2 = β
∼
 + δβ2), 

denoted as ⎪+ l; $ 1> or ⎪$ l; + 1>; 

2) azimuthally symmetric linearly polarized TM 
and TE modes which can be united in unstable, 
topologically inhomogeneous vortices 

IV 

$σ
σ, m = TM0m + iσ TE0m 

(i = $ 1, l = 1, σ = ± 1), 

denoted as ⎪+ 1; $ 1> or ⎪$ 1; + 1>. 
Let us find the expression for the polarization 

correction δβ. By the equations (2) and (4) one can 
obtain the relations (below we omit the index ⊥) 

(β2
 $ β

∼2) e* e
∼

 + e* ∇
2 e

∼
 $ e

∼
 ∇2

 e* = e
∼

 ∇ (e* ∇ lnn2), (5) 

(β2
 $ β

∼2) e e
∼*

 + e ∇
2

 e
∼*

 $ e
∼*

 ∇
2

 e = e
∼*

 ∇ (e ∇ lnn2). (6) 

Let us take into account that β2
 $ β

∼2
 = (β + β

∼
) × 

× (β $ β
∼
) ≈ 2β

∼
 δβ.13 Then, summing Eqs. (5) and (6) 

and integrating over the cross section of the fiber S, we 
obtain 

δβ = A ⌡⌠
S

 {(e
∼* ∇2 e $ e ∇2 e

∼*) + (e
∼
 ∇2 e* $ e* ∇2 e

∼
) + 

+ [e
∼* ∇ (e ∇ lnn2) + e

∼
 ∇ (e* ∇ lnn2)]} dS, (7) 

where A$1
 = 

2V

ρ 2 Δ
 ⌡⌠

S

 (e
∼*

 e + e
∼

 e*) dS is the normalizing 

factor. 
Profile height of the refractive index Δ is a small 

parameter, so Δ → 0 in the case of the scalar wave 

equation (4). To take into account polarization 
corrections induced by the right side of the vector wave 
equation (2), let us represent the electric field e as a 
series with respect to orders of the infinitesimal of Δ 
(see Ref. 13) 

e = e
∼
⎪Δ=0 + Δe(1) + Δ2e(2) + ...  (8) 

Let us restrict ourselves by two first terms in 
Eq. (8). Then we must simultaneously restrict ourselves 
by the first term in the expansion of the value 

∇ lnn2(r), where n(r) is given by the expression (3): 

∇ lnn2 ≈ $ 2 Δ ∇ f. The polarization correction (7) can 
be represented in the form 

δβ = δβ
∼

 + 2Δ2 A ⌡⌠    ⌡⌠
S∞  

 (e(1) ∇f ∇e
∼* + e(1)* ∇f ∇e

∼
) dS,  (9) 

where the orders of the infinitesimal values δβ
∼
 and 

δβ(1) are Δ and Δ2, respectively. 
Let us first consider the operator representation of 

the polarization correction δβ
∼
 to the zero order field e

∼
. 

One can demonstrate that e
∼*

k ∂k f ∂i e
∼

i = e
∼

k ∂k f ∂i e
∼*

i  
for all eigenfields of the optical fiber. Here the indices 

i and k take on the values x and y, ∂i = 
∂

∂xi
 and the 

repeating indices mean summation. In this case, for the 
polarization correction we obtain 
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δβ
∼
 = 2Δ A ⌡⌠    ⌡⌠

S   

 e
∼*

i  ∂i f ∂k e
∼

k dS,  (10) 

where e ≈ e
∼
 is assumed. Let us represent the integrand 

of Eq. (10) in the operator form 

e
∼*

i  ∂i f ∂k e
∼

k = (e
∼*

x, e
∼*

y) × 

× ⎝
⎛

⎠
⎞∂x f ∂x ∂x f ∂y

∂y f ∂x ∂y f ∂y
 
⎝
⎜
⎛

⎠
⎟
⎞e

∼
x

e
∼

y

 = <e
∼⏐V

^ ⏐e
∼
>.  (11) 

and decompose the matrix differential operator with 
respect to the Pauli matrices 

V
^
 = σ̂0 V

^
0 + σ̂1 V

^
1 + σ̂2 V

^
2 + σ̂3 V

^
3 , 

where 

V
^

0 = 
1
2 (∂x f ∂x + ∂y f ∂y) = 

1
2 ∂r f ∂r; 

V
^

1 = 
1
2 (∂x f ∂x $ ∂y f ∂y) = 

= 
1
2 ∂r f ⎝

⎛
⎠
⎞cos2ϕ ∂r $ 

1
r
 sin2ϕ ∂ϕ  ; 

V
^

2 = 
1
2 (∂x f ∂y + ∂y f ∂x) = 

= 
1
2 ∂r f ⎝

⎛
⎠
⎞sin2ϕ ∂r + 

1
r
 cos2ϕ ∂ϕ  ; 

V
^

3 = 
i
2 (∂x f ∂y + ∂y f ∂x) = 

i
2r

 ∂r f ∂ϕ. (12) 

Using the cylindrical coordinate system, we 
restrict ourselves by the case of an axially symmetric 
fiber (∂ϕ f = 0). It is convenient to represent the 

operator V
^
 in the form 

V
^
 = 

1
2ρ2 

∂f
∂r (D

^
 + T

^
 D
^
),  

where 

D
^
 = σ̂0 

∂
∂R + 

i
R

 σ̂3 
∂

∂ϕ ; 

T
^
 = σ̂1 cos2ϕ + σ̂2 cos2ϕ = 

= ⎝
⎛

⎠
⎞cos2ϕ sin2ϕ

sin2ϕ $ cos2ϕ  

L
 = ⎝
⎛

⎠
⎞0 e$i2ϕ

ei2ϕ 0
 

C
. (13) 

The index L means that the matrix operators are 
represented in a linearly polarized basis. The index C 
points to a circularly polarized basis. 

The form (13) is similar to the operator of spin-
orbit interaction for electrons in a cylindrically  
 

symmetric field. The mean value of the physical value 

of the operator V
^
 is equal to the polarization correction 

δβ
∼
. The operator D

^
 includes the components that are 

similar to the operator of contact interaction K
^
 = σ̂0 

∂
∂R 

and spin-orbit interaction S
^
 = 

i
R

 σ̂3 
∂

∂ϕ for an electron 

in a hydrogen atom.15 The properties  
of the spin-orbit interaction operator are presented in 
Table I. 

For instance, for a fiber with parabolic profile of 
the refractive index, the correction is 

δβ
∼
 = $ i (l + i) ( 2Δ)3/(2ρV). (14) 

Note that topological properties of low-mode fibers 
connected with the non-holonomic Berry phase are 

caused by action of the operator T
^
 on the fields of CV 

vortices (see Table I). 

Action of the operators D
^
 and T

^
 D
^
 on circularly 

polarized CV vortices significantly differs from their 
action on linearly polarized azimuthally symmetric 

fields of TE and TM modes. The operator D
^
 transforms 

the radial distribution of the field: Fl(R) ⇒ G$i
l (R), 

where G$i
l (R) = 

dFl

dR
 $ i 

l
R

 Fl. The matrix T
^
 can be 

represented as a product of the Pauli matrix σ̂1 and 
operator of rotation by an angle 2ϕ 

T
^

 = σ̂1 R
^
(2ϕ) = ⎝

⎛
⎠
⎞1 0

0 $ 1  ⎝
⎛

⎠
⎞cos2ϕ sin2ϕ

$ sin2ϕ cos2ϕ  . (15) 

The rotation operator R
^
 transforms the value of the 

topological charge in the following way: l ⇒ l + 2i. The 

matrix σ̂1 changes the direction of circulation by the 

opposite one: σ+ ⇔ σ$. Action of the operator T
^
 D
^
 on the 

fields e
∼
 for CV vortices transforms them into orthogonal 

mode states. So, a contribution to the polarization 

correction δβ
∼
 is given only by the operator D

^
 which does 

not change the state of field polarization and does not 
transform the field phase. It is different from action of 

the operators D
^
 and T

^
 D
^
 upon the fields of TE and TM 

modes. In this case, both the parts of the operator V
^
 

bring a contribution in the field variation. Therefore, in 
an œoverradiatedB field of TE and TM modes, both the 
field and phase are varied. This difference in action of the 
operator V on polarization of fields of CV vortices and 
TE, TM modes indicates the presence of two physical 
processes: circular birefringence for the field of CV 
vortices and linear birefringence for TE and TM modes. 
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TABLE I. Transformation of fields and their propagation constants under the action of the operator of spin-orbit 
interaction. 

 

 i = + 1 l ≥ 1
i = $ 1 l > 1  σ = ± 1 

 

i = $ 1  l = 1 
 

i = $ 1  l = 1 

 C V 

iσ
σl  

TM TE 
 

ex 

⎢e∼> 
ey 

1

2
 Fl e

iσlϕ 

iiσ
2
 Fl e

iσlϕ 

 

F1 cosϕ 
 

F1 sinϕ 

 

F1 sinϕ 
 

$ F1 cosϕ 

 

ex 

D̂ ⎢e∼> 
ey 

1

2
 G$i

l  eiσlϕ 

iiσ
2
 G$i

l  eiσlϕ 

 

G+
1 cosϕ 

 

G+
1 sinϕ 

 

G+
1 sinϕ 

 

$ G+
1 cosϕ 

 

ex 

T̂ D̂ ⎢e∼> 
ey 

1

2
 G$i

l  eiσ(l+2i)ϕ 

iiσ
2
 G$i

l  eiσ(l+2i)ϕ 

 

G+
1 cosϕ 

 

G+
1 sinϕ 

 

$ G+
1 sinϕ 
 

G+
1 cosϕ 

a <e
∼⎪ 

∂f
∂R D̂ ⎢e∼> 

 

I$i
l  

 

I+
1 

 

I+
1 

a <e
∼⎪ 

∂f
∂R T̂ D̂ ⎢e∼> 

 

0 
 

I+
1 

 

$ I+
1 

δβ
∼
 

 

I$i
l  

 

2 I+
1 

 

0 
 

δβ (f = R2) $ i (l + i) 
( 2Δ)3

2ρV
 

0 0 

 

a = 
( 2Δ)3

4ρV
 

1

<e
∼⎪ e∼>

 ;   δβ
∼
 = 

( 2Δ)3

4ρV
 

<e
∼⎪ 

∂f
∂R (D̂ + T̂ D̂)⎪ e∼>

<e
∼⎪ e∼>

 ;   I$i
l  = 

( 2Δ)3

4ρV
 ⌡⌠
0

∞
 

∂f
∂R Fl G

$i
l  RdR/⌡⌠

0

∞
 F2

l RdR. 

 

Nevertheless the eigenfunctions of the operator V
^
 

do not coincide with the value of the correction field 

e(1). Let us study the physical nature of the 

polarization correction δβ
∼
. 

 

3. TOPOLOGICAL PHASE AND POLARIZATION 
CORRECTION 

 

As was demonstrated in Ref. 4, adiabatic cyclic 
variation of parameters of the wave function of a 
microparticle leads to appearance of the non-holonomic 
topological phase γT. The phase γT is characterized by 
the result of parallel displacement of the state vector 
along a closed curve in the configuration space and 
arises due to action of a non-holonomic constraint, in 
particular, due to propagation of a transversal light 
wave in an inhomogeneous medium. 

In optics, the topological phase arises as a rule in 
wave processes accompanied by variations of the 
polarization state or spin direction with respect to the z 
axis. In the electrodynamics representation such a 
process corresponds, for instance, to wave passing  
 

through a ream of anisotropic slabs (Pancharatnam 
phase16) or in propagation of light by a non-flat ray 
trajectory (Rytov$Vladimirskii phase6,7). Accumulation 
of the topological phase can also be manifested due to 
variation of the lateral structure of a laser beam in an 
astigmatic mode converter.17 This variety of topological 
phases is systematized in Ref. 4 and called the Berry 
phase.18 

However, propagation of eigenvortices through an 
optical fiber is not connected with variations of any 
explicit parameters of a wave. Nevertheless the presence 
of the p ϕ-component of the energy flow causes 
precession of the Poynting vector around the z axis. 
The energy flow can be characterized by œforceB lines. 
The œforceB lines of the Poynting vector (Fig. 1) for 
homogeneous and inhomogeneous vortices take the form 
of spiral trajectories. The energy flow of homogeneous 

CV 

σ
σ l vortices contains a topologically homogeneous 

field of helixes (Fig. 1a). For inhomogeneous CV 

$σ
σ l 

vortices, the field of the Poynting vector contains two 
types of helical trajectories differing in pitch and 
torsion sign (Fig. 1b) and separated by a family of 
straight lines. 
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= 

 
b 
 

FIG. 1. Lines of energy flow: (a) stable topologically 
homogeneous CV vortex (i = + 1, l = 1); (b) unstable 
topologically inhomogeneous IV vortex (i = $ 1, l = 1). 
 

3.1. Homogeneous vortices of a parabolic fiber 
 
Let us consider the process of accumulation of the 

topological phase γT in the field of a homogeneous 

CV 

σ

σ l vortex in an optical fiber with a parabolic profile 

of the refractive index n2(R) = n 2
co (1 $ 2 ΔR2). As seen 

from Fig. 1a, the helix pitch h1 is the same for all the 

lines of the energy flow of a CV 

σ

σ l vortex and equals 

h1 = 2πρ/ 2Δ. (16) 

The helix pitch h1 is determined only by the full 
radius of the fiber ρ and profile height of the refractive 
index Δ. Equation (16) describes only weakly directing 
fibers. So it is not surprising that the helix pitch h1 
coincides with the pitch of the spiral trajectory of rays 
in a multimode light guide in the paraxial 
approximation of geometrical optics (Eq. (2.38) in 
Ref. 13). 

It means that the Poynting vector P executes a 
precession motion along the propagation axis z during 
propagation of a homogeneous CV vortex. Let us 
perform parallel displacement of the electric vector e on 

a sphere along a œstreamB line of the vector P (Ref. 5) 
by an angle ϕ and, after easy calculations, obtain the 
topological phase γT 

PT = ϕ (1 $ Pz/P),  (17) 

where P2 = P2
ϕ + P2

r + P2
z; ϕ is the azimuth angle of 

rotation of the origin of the moving frames at the 
œstreamB line of the vector P. The specific topological 
phase (phase per unity of trajectory length in the phase 

space) for homogeneous CV 

σ

σ l vortices can be written 
in the form 

θ1 = 
∂γT

∂z  = ⎝
⎛

⎠
⎞1 $ 

Pz

P
  

∂ϕ
∂z = 

2π
h1

 ⎝
⎛

⎠
⎞1 $ 

Pz

P
  = 

= 
2Δ
ρ  

⎝
⎜
⎛

⎠
⎟
⎞1 $ 

1

1 + 2ΔR2
 = 

( 2Δ)3 R2

2ρ  $ 

$ 
3( 2Δ)5 R4

8ρ  + 
5( 2Δ)7 R6

16ρ  $ ... . (18) 

In a multimode fiber, the direction of energy 
propagation can be related to the direction of the ray 
trajectory as a certain approximation.13 However, the 
œstreamB lines of the vector P cannot be identified with 
ray trajectories for a low-mode fiber: eigenmodes are 
spread along the z axis. At the same time, energy flow 
in a fiber is not homogeneous in the lateral section and 
is characterized by the module of P. Let us find the 
mean value of θ1 with respect to the state p  = ⎪p  ⎪, 
restricting ourselves by the series’ term of order 
(2Δ)3/2 in Eq. (18) 

<θ1> = 

⌡⌠
θ1

 θ1

 

P dθ1

⌡⌠
θ1

 P dθ1

 ≈ $ 
( 2Δ)3

2ρV
 (l + 1), 

(i = + 1).  (19) 

The obtained value of the specific topological 
phase <θ1> exactly coincides with the polarization 
correction δβ1 to the propagation constant of the even 
and odd me l+1 modes (Tables 14.1 and 14.2, Ref. 13) 

by use of which one can form a CV 

σ

σ l vortex.19,20 It 
coincides also with the mean value of the operator of 

spin-orbit interaction V
^
 (Eq. (14)). 

 

3.2. Inhomogeneous vortices of a parabolic fiber 
 

Let us obtain the topological phase acquired by an 

inhomogeneous CV 

$σ
σ l vortex. One can demonstrate14 

that the full flow of the angular momentum for IV 

$σ
σ  

vortices is zero: l z(IV) = 0. This is a consequence of 
topological inhomogeneity of œstreamB lines of the 
vector P for IV vortices (see Fig. 1b). Such a structure 
of the vector P also leads to inhomogeneous character 
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of the topological phase θ2 and, as a consequence, 
causes divergence of the integrals in Eq. (19). To avoid 
this difficulty, let us consider a significantly multimode 
fiber with a waveguide parameter V → ∞. The spiral 

pitch of the CV 

$σ
σ l vortex is 

h2 = 
2πρ
2Δ

 
1

1 $ R2
0/R2 , R0 = 

2l
V

 .  (20) 

As seen from Eq. (20), the characteristic radius 
R0 → 0 as V → ∞. In this case, two singularities for 
R = R0 and R = 0 superpose at the fiber axis and 
annihilate, and Eq. (20) coincides with Eq. (16). 

Analysis of Eq. (20) demonstrates that the 
precession direction of the Poynting vector of an 
inhomogeneous vortex depends on the spiral radius R. 
As seen in Fig. 1b, precession directions are opposite at 
the parts with R < R0 and R > R0. 

Since the fields of a CV 

$σ
σ l vortex can be composed 

by two e ml$1 modes19,20 by substitution of the index 
l + 1 instead of l $ 1 in Eq. (19), we come to the 
expression for the specific topological phase of 
inhomogeneous CV vortices 

<θ2> = ( 2Δ)3/(2ρV) (l $1), (i = $ 1). (21) 

The obtained expression for <θ2> exactly coincides 
with the expression for the polarization correction δβ2 
to the propagation constant of the even and odd e ml$1 
modes (Tables 14.1 and 14.2, Ref. 13) and with the 

mean value of the operator of spin-orbit interaction V
^
 

(see Eq. (14)). As follows from the form of Eqs. (19) 
and (21), the topological phase of directed vortices 
depends on two parameters: azimuth index l and index 
of spin-orbit connection i. Such a separation of the 
indices l and i indicates the presence of two processes 
in propagation of an optical vortex: directions of both 
orbit and spin angular momenta vary cyclically. As seen 
from Eq. (21), the topological phase <θ2> vanishes for 
the IV vortex of a parabolic fiber. This result is 
directly connected with the fact that the z-component 
of the angular momentum of the IV vortex is zero due 
to opposite directions of the spin and orbit angular 
momenta. 

Let us write Eqs. (19) and (21) in a form of 
temporal dimensional representation 

τ 

i

l = 
ρ2

cΔ <θ
i

l> = $ i 
l + i
ωnco

 .  (22) 

The value τ 

i

l in Eq. (22) depends only on the 
parameters of the vortex field and is the proper time of 
the directed vortex of the optical fiber. It is easy to see 

that τ 

i

l < 0 for homogeneous CV vortices, τ 

i

l > 0 for 

inhomogeneous CV vortices, and τ 

i

l = 0 for IV vortices. 
Multiplying the numerator and denominator of 

Eq. (22) by the Planck constant �, we obtain the 

quotient of the angular momentum of a photon L = 

= $ � (i l + 1) to photon energy E = � ω. Thus, one 

can assume that the value τ 

i

l characterizes a certain 
proper time of a photon propagating in a potential field 

U = n2(R) = n2
co (1 $ 2 ΔR2). 

In transition from one vortex to another, the 

proper time τ 

i

l is measured in quanta and can take 
negative values. 

 
4. ANGULAR MOMENTUM OF DIRECTED 

VORTICES 
 
One can demonstrate that the components of the 

Poynting vector P for directed vortices has the form 

Pr = 0,   Pϕ = $ i σ K Fl(R) G$i
l (R), 

Pz = K (V/ 2Δ) F2
l(R),  (23) 

where Fl(R) is the amplitude function of the field (in 
the case of a parabolic fiber), 

Fl(R) = R 

l exp ($ VR2/2));  

G$i
l  = 

dFl

dR
 $ i 

l
R

 Fl; K = E 

2
0 nco 

ε0

μ0
 

2Δ
V

 . 

Using Eq. (23), let us find the z-component of the 
angular momentum of the vortex per unity of fiber 
length 

Lz = ρ2
⌡⌠    ⌡⌠
S   

 mz R dR dϕ, (24) 

where 

mz = $ 
1

c2 r Pϕ = 

= $ i σ 
K

c2 ρ Fl(R) R ⎣
⎡

⎦
⎤dFl(R)

dR
 $ i 

l
R

 Fl(R)  

is the density of the angular momentum. Comparing 
Eq. (24) with the expression (10) from Ref. 1, we find 
that the first term of the sum can be formally 
associated with the spin angular momentum, and the 
second term with the orbit angular momentum of the 
vortex. Dividing the obtained expression by the full 
energy flow in the z-direction, we have 

t
iσ
σl  = σ (l + i)/ω,  (25) 

what well agrees with Eq. (1) up to the index of spin-
orbit connection (l → σl, σ → iσ). Comparing 

Eqs. (1), (22), and (25), we see that time τ 

i

l describes 
the result of spin-orbit interaction in directed vortices 
of a parabolic fiber. Since Eq. (22) describes the  
 
polarization correction to propagation constants of 
circular vortices, we find that spin-orbit interaction in 
directed vortices removes degeneration of the 

propagation constant β
∼

l  by β
∼+

l  and β
∼$

l . This process is 
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similar to that of spin-orbit interaction splitting energy 
levels in atoms.3 

The expression (25) is obtained for an arbitrary 
profile of the refractive index n(R) and demonstrates 
that spin-orbit interaction is characteristic for all fibers 
with cylindrical symmetry. However, identity of 
Eqs. (22) and (25) is peculiar only to parabolic fibers. 

One can demonstrate that the proper time τ 

i

l in fibers 
with step-type profile of the refractive index for 
directed vortices near the interception is determined as 

τ 

i=+1
l  ≈ $ 2 (l $ 1)/ω,  τi=$1

l  ≈ 0.  (26) 

It follows from Eq. (26) that the character of 
spin-orbit interaction in directed vortices depends on 
the shape of the potential well profile. 

 

5. TOPOLOGICAL BIREFRINGENCE OF OPTICAL 
VORTICES 

 

5.1. Historical references. Main equations 

 

The ability of a locally isotropic layered medium to 
cause birefringence in the field of an optical wave is 
known for a long time as birefringence of a form.21 This 
linear birefringence is connected with difference in 
boundary conditions for normal and tangent components 
of the electric field. Later, analyzing propagation of 
polarized light rays through a locally isotropic 
nonuniform medium, Rytov6 and Vladimirskii7 noted that 
a light wave underwent circular birefringence. 

However, circular anisotropy of the medium 
manifests itself differently for light waves with flat and 
not flat ray trajectories. For waves with a flat ray 
trajectory, birefringence does not arise. At the same 
time, waves propagating by helical trajectories acquire 
different phase velocities for right and left circular 
polarization. 

As it was demonstrated in Sect. 2 and 3, physical 
nature of different response of a locally isotropic 
nonuniform medium to right and left circular 
polarization of a wave is connected with the topological 
phase of the field. Action of linear and circular 
birefringence on fields of significantly multimode fibers 
(splitting ray trajectories or wave caustics) was studied 
in Refs. 8, 9 and called topological birefringence. 
Analyzing distribution of light rays in a nonuniform 
medium on the base of VKB-method, the authors of 
Refs. 22 and 23 came to the conclusion that the value 
of circular birefringence of a nonuniform medium is 

δnC ∼ (λ/a), and linear birefringence is δnL ∼ (λ/a)2, 
(λ is wavelength, a is the characteristic size of non-
homogeneity). 

It should be expected that the processes of 
birefringence must be most clearly seen in optical fibers 
due to uniquely long length of wave interaction with 
locally isotropic nonuniform medium of the fiber. 
 

Differences in velocities of proper waves in analysis of 
solutions of Maxwell’s equations are represented by a 
spectrum of propagation constants, and the variety of 
optical phenomena caused by differences in velocities of 
wave propagation in a fiber is known as the 
phenomenon of mode dispersion13 which is not 
connected with a special anisotropic response of the 
inhomogeneous medium. 

Nevertheless, the propagation constant of each 

eigenmode can be decomposed into a scalar part β
∼

l (l is 
the azimuth index characterizing symmetry properties of 

the field) and a certain correction δβ
i

l (i is the index of 
spin-orbit connection) characterizing the polarization 
properties of the field.13 

One can separate the mode dispersion as a 
phenomenon connected with the difference of scalar 

propagation constants β
∼

l from polarization effects 

splitting the œlineB β
∼

l into a fine structure which is 

determined by the correction δβ 

i

l. The polarization 

correction δβ
∼
 is represented in Sect. 2 as the mean 

value of the physical value of operator V
^
 of spin-orbit 

interaction (see Eq. (13)). In our opinion, it is spin-
orbit interaction that causes birefringence of waves in a 
locally isotropic medium. 

In this section we present the results of theoretical 
study of both separate and joint manifesting of circular 
and linear birefringence of optical vortices in low-mode 
fibers. 

As seen from Table I, polarization correction δβ
∼
 for 

TE and TM modes of a parabolic fiber is zero  

(δβ
∼

Še = δβ
∼

Šl  = 0). However, this does not mean that 

polarization correction δβ(1) to the correction field e(1) 
in Eq. (9) also equals zero for these modes. The case is 
that the polarization correction of zero order was 

obtained as an approximation e∼ → �. However, the 
symmetry form of force lines of a TE mode (Table III) 
excludes additional field distortion connected with the 
polarization correction: force lines of the field are 
normal to the curvature vector of the space of an 
axially symmetric fiber. The symmetry form of the field 
of a TM mode indicates a possible distortion of force 
lines which cause displacement of propagation constants 
of TE and TM modes. 

On the other hand, the polarization correction δβ
∼
 

for CV vortices is larger than the correction δβ(1) by an 

order of magnitude (see Eq. (9)). So the value δβ(1) 
will not give significant distortions in the process of 
CV vortices propagation. 

As seen from Eq. (9), to determine the value 

δβ(1), it is necessary to obtain the form of the 
correction field e(1). One can demonstrate that the 
correction field e(1) satisfies the following equations13: 
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⎣
⎡

⎦
⎤∂2

R + 
1
R

 ∂R $ 
1

R2 + U
∼ 2 $ V2 f + 

1

R2 ∂
2
ϕ  e(1)

r  $ 

$ 

2

R2 ∂ϕ e
(1)
ϕ  = 2 ∂R f ∂R e

∼
r + 2 ∂2

R f e
∼

r + 
4ρV

( 2Δ)3 δβ
∼
 e
∼

r ,  

 (27) 

⎣
⎡

⎦
⎤∂2

R + 
1
R

 ∂R $ 
1

R2 + U
∼ 2 $ V2 f + 

1

R2 ∂
2
ϕ  e(1)

ϕ  + 

+ 
2

R2 ∂ϕ e(1)
r  = 

2
R

 ∂R f ∂ϕ e
∼

r + 

4ρV

( 2Δ)3 δβ
∼

 e
∼
ϕ .  (28) 

The form of the correction fields e(1) and values 

δβ(1) for CV vortices, TE and TM modes as solutions of 
the equations (27), (28), and (9) is presented in Table II. 

The condition δβ = 0 is always satisfied for TE 
mode; however, δβ ≠ 0 for TM mode. For instance, in a 
fiber with a parabolic profile of the refractive index 

f = R2, polarization corrections δβ
∼
 equal zero both for  

TE and TM mode: δβ
∼

Še, Šl  = 0. However, 
calculation that was performed on the base of data 
from Table II demonstrates that the value of the 

polarization correction δβ
∼(1)

Šl  ∼ (λ/ρ)5/2. So 
propagation rates of TE and TM modes are different. 
It is the difference in propagation constants that is 
the main mechanism of linear birefringence of optical 

fibers whose value is nT = (λ/ρ)3. For instance, 

V = 3.6, Δ ∼ 10$3, δβ ∼ 10$1
 m$1 for a parabolic fiber 

with ρ = 3.5 μm, and the IV vortex breaks down at 
the length Λ = 67 m. Earlier, the IV vortex in a 
parabolic fiber was believed to be stable.14 

The term œlinear birefringenceB means that right 
circular polarization σ = +1 turn into left circular 
polarization in propagation of a wave. For instance, in 
a IV vortex, conversion of states  

⎪+ 1, $ 1> ⇔ ⎪$ 1, + 1> 

takes place at the half of the beating length. 
 

 
TABLE II. Corrections to the electric fields and propagation constants for CV vortices, TE and TM modes of an 
optical fiber. 

 

 i = + 1 l ≥ 1
i = $ 1 l > 1  σ = ± 1 

 
i = $ 1  l = 1 

 
i = $ 1  l = 1 

 CV 
iσ
σl  TM TE 

e
∼

r 

 

e
∼
ϕ 

1

2
 F
∼

l e
iσ(l+2i)ϕ 

iiσ
2
 F
∼

l e
iσ(l+2i)ϕ 

F
∼

1 

 
0 

0 
 

F
∼

1 

e(1)
r  
 

e(1)
ϕ  

1

2
 F(1)

l  eiσ(l+2i)ϕ 

0 

F(1)
1  

 
0 

0 
 
0 

 

δβ(1) (f = R2) $ i (l + 1) (l + 3i) 
( 2Δ)5

2ρV2  $ 2 
( 2Δ)5

ρV2  
 
0 

 

For the profile f = R2: F
∼

l = Rl exp ($ VR2/2), F(1)
l  = Rl+2 exp ($ VR2/2). 

 
 
 
The contribution of the second term of Eq. (9) 

into the full polarization correction is very small for 

CV vortices. The main contribution is given by δβ
∼
, 

which does not change polarization but is different 
for homogeneous and inhomogeneous CV vortices. So, 
CV vortices in the states {⎮+ l, + 1>; ⎮$ l, $ 1>} 
and {⎮+ l, $ 1>;⎮$ l, + 1>} have different phase 
progressions at the same fiber length z. This 
phenomenon is identical to circular birefringence 
which is of more general character in this case (it is  
 

described not only by the polarization basis but also 
by the topological charge) as compared with the 
classical analog in crystal optics. 

Comparison of circular and linear birefringence 
of smooth fields of HE11 modes and fields with phase 
and polarization singularities of CV vortices, TE and 
TM modes is presented in Table III. 

Let us consider some particular cases of 

exhibitions of circular and linear birefringence in 

locally isotropic, non-disturbed multimode fibers. 
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TABLE III. Comparison of induced and topological birefringence of light in optical fibers. 
 

Basic homogeneously polarized HE11 mode (induced 
birefringence) 

Homogeneous and inhomogeneous CV vortices 
and azimuthally symmetric TE and TM modes 

Circular birefringence 

  

l = 0, σ = ± 1 

HE +
11 ⇒ ⎪ψ+ > =⎪ 0, + 1>, 

HE $
11 ⇒ ⎪ψ$ > =⎪ 0, $ 1> 

eigenvalues: 

<HE +
11> ⇒ β

∼
0 + δβ+ 

<HE $
11> ⇒ β

∼
0 + δβ$ 

in disturbance 

δβ+ ≠ δβ$ 

⎪ψ+ > =⎪ σl, iσ > 
homogeneous vortices i = + 1, l ≥ 1 

CV+
+l ⇒ ⎪ψ+ > =⎪ + l; + 1>, Selection  

CV$
$l ⇒ ⎪ψ+ > =⎪ $ l; $ 1> rule: 

 σl + iσ ≠ 0 
inhomogeneous vortices i = $ 1, l > 1 

CV$
+l ⇒ ⎪ψ$ > =⎪ + l; $ 1> 

CV+
$l ⇒ ⎪ψ$ > =⎪ $ l; + 1> 

<CV+
+l> = <CV$

$l> ⇒ β
∼

l + δβ+
l  

<CV$
+l> = <CV+

$l> ⇒ β
∼

l + δβ$
l  

Linear birefringence 

 

HE x
11: ⎪ψ > ⇒⎪ 0, + 1> + ⎮0, $ 1> 

HE y
11: ⎪ψ > ⇒⎪ 0, + 1> $ ⎮0, $ 1> 

<HE x
11> ⇒ β

∼
0 + δβx  in disturbance 

<HE y
11> ⇒ β

∼
0 + δβy   δβ ≠ δβy 

TM: ⎪ψ > ⇒⎪ $ 1, + 1> + ⎪ + 1, $ 1> 
TM: ⎪ψ > ⇒⎪ $ 1, + 1> $ ⎪ + 1, $ 1> 

<TM> ⇒ β
∼

1 + δβTM; δβTM ≠ 0 

<TE> ⇒ β
∼

1 + δβTE; δβTE = 0 

 

5.2. Circular birefringence. Rytov’s effect and the 
optical Magnus effect 

 
Let us consider propagation of superposition of 

homogeneous and inhomogeneous CV vortices24 in a 
low-mode optical fiber. 

LV 

x
σl = CV 

+σ
σl  + CV 

$σ
σl , (29) 

CP 

σ
σl + CV 

σ
+σl + CV 

σ
$σl,  (30) 

where i = + 1 for the first component and i = $ 1 for 
the second one. Besides, the condition l ≠ 1 must be  
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satisfied for inhomogeneous CV vortices. Using the 
expression for CV vortices, let us write the electric 

field of a linearly polarized LV 

x
σl vortex in the form 

e⊥(L Vx
σl) = (x̂ cosδβ21z + σ ŷ sinδβ21z) × 

× Fl(R) exp {i σ l ϕ} exp {i β
∼′

 z},  (31) 

where 

δβ21 = 
δβ2 $ δβ1

2  ,   β
∼′ = β

∼
 + 

δβ1 + δβ2

2  . 

It follows from Eq. (31) that the electric vector of 
linear polarization rotates by the angle 

ψ = σδβ21 z = (2π/λ) δnT z  (32) 

during propagation of an LV vortex along the fiber. 
The angle is characterized by efficient birefringence 

δnT = (c2 Δ)/(nco ρ
2 ω2) σl.  (33) 

The direction of rotation of the electric vector is 
determined by the sign of the topological charge. The 
expression (33) describes a waveguide analog of the 
Rytov$Vladimirskii effect6,7 which was initially 
formulated for non-flat ray trajectories of plane waves 
propagated in a locally isotropic nonuniform medium. 
The formalism of ray trajectories is not applicable for a 
low-mode fiber. In this case, the rotation of the electric 
vector is characterized by parallel displacement of the 
state vector along the lines of energy flow mapped into 
a sphere in the pulse space. The direction of rotation of 
the electric vector is characterized by that of torsion of 
energy flow lines and is determined by the sign of the 
topological charge of the LV vortex. 

One can excite a circularly polarized CP 

σ
lm wave 

Eq. (30) with degenerated boundary dislocation in a 
fiber. Let us write the transversal electric field in the 
form 

e⊥(CP 

σ,even
lm ) = {x̂ + i σ ŷ} × 

× cos (σ l ϕ $ δβ21 z) Fl(R) exp (i β
∼′

 z). (34) 
It follows from Eq. (34) that, in propagation 

along a parabolic fiber, the axis of degenerated 
boundary dislocation of vortex superposition rotate by 
the angle 

χ = $ σδβ21 z = $ (2π/λ) δnT z.  (35) 

The rotation direction of the dislocation axis is 
opposite to that of linear polarization in the Rytov$
Vladimirskii effect. Such a rotation of boundary 
dislocation is a waveguide exhibition of the optical 
Magnus effect (Ref. 25). 

Rotation of a field is characterized by the efficient 
refraction index δnT both in the waveguide Rytov$
Vladimirskii effect33 and the waveguide optical Magnus 
effect.35 This phenomenon is equivalent to circular  
 

birefringence of a medium. However, first, it is 
observed in a locally isotropic medium; second, the 
refraction index δnT depends on the topological charge 
σl. So, the value δnT can be characterized as 
topological birefringence. A similar phenomenon was 
already observed earlier in multimode fibers (Ref. 9). 

 
5.3. Linear birefringence.  

Joint Rytov$Magnus effect 
 

Azimuthally symmetric TE and TM modes in 

optical fibers can be united in fields of unstable IV 

$σ
σ  

vortices containing partial ⎪+ 1, $ 1> and ⎪$ 1, + 1> 
vortices whose amplitude oscillates during wave 
propagation along the z axis.14 One can demonstrate 
that œforceB lines of the azimuth and radial 

components of the Poynting vector P for the CP 

+
11 

field are deformed during propagation in such a fiber 
and form the following pictures in the cross section of 
the fiber (Fig. 2). 

The change of the form of the force lines of the 

CP 

+
11 mode is caused by oscillation changes of the IV 

vortex field in which beatings arise between the fields 
of partial ⎪+ 1; $ 1> and ⎪$ 1; + 1> vortices. As a 
result of these beatings, opposite topological charges 

are added alternately in the CP 

+
11 field and either a 

homogeneous circularly polarized field with 
degenerated boundary dislocation ⎪0; + 1> or a 
linearly polarized field with purely helical dislocation 
⎪+ 1; 0 > is formed. 

It is evident that analogs of fields of CP 

+
11 mode 

and LV11 vortex are formed in certain sections of a 
stepwise fiber, and directions of rotations of linear 
polarization and axes of boundary dislocation are 
opposite. The distance between these sections is equal 
to a quarter of the beating length Λ for a IV 
vortex.14 In the sections z = 2n (ΛIV/4) 
(n = 0, 1, 2, ...) the angle of rotation of the 
boundary dislocation axis χ is described by the 
expression (34) and characterizes the waveguide 
optical Magnus effect. In the sections 
z = (2C + 1) ΛIV/4 the angle ψ of rotation of the 
linear polarization vector of the LV11 vortex is 
described by the expression (35) and represents the 
Rytov$Vladimirskii effect. At the intermediate 
lengths of the fiber, Rytov’s effect and the optical 
Magnus effect are observed simultaneously. Below we 
characterize this phenomenon as the joint Rytov$Magnus 
effect. This effect is connected both with linear 
birefringence of TE and TM modes and with circular 
birefringence of homogeneous and inhomogeneous vortices 
in an inhomogeneous medium of the fiber. 

Note that in propagation of a wave there arises  
conversion of the spin S and angular L momenta 
between the states ⎪0; + 1> and ⎪+ 1; 0 >. The 
phenomenon of conversion L ⇔ S can be observed 
only in fields with topological charge ⎪σl ⎪= 1. 
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 c d 
 

FIG. 2. The structure of force lines (lines with arrows) and pseudopotential lines of the transversal Poynting vector P⊥ 
of a circularly polarized CP11 mode in the sections: z = 0 (a); z = π/(2 (βTE $ βTM)) (b); z =  

= π/(βTE $ βTM) (c); lines of the vector P⊥ of a linearly polarized LP11 mode (d). The painted circle means the core of 
a fiber with radius of 3.5 μm. 

 

6. THE EXPERIMENT 
 

The experiment dealt with rotation of the direction 
of linear polarization ψ and axis of degenerated boundary 
dislocation χ in different sections of a fiber exciting it by 

a circularly polarized CP 

+
11 mode (or a LV11 vortex). A 

low-mode optical fiber with stepwise profile of the 
refractive index was chosen. The permissible value of 

induced linear birefringence was δnL ∼ 10$6. The radius of 
the fiber core was ρ = 3.5 μm, the waveguide parameter 
V = 3.6 for λ = 0.63 μm. The fiber could realize HE11 

mode, CV 

σ
σ and IV 

$σ
σ  vortices. The experimental unit is 

presented in Fig. 3. 

To suppress excitation of the HE11 mode maximally, 

a field of a circularly polarized CP 

+
11 mode was formed at 

the exit of the fiber by use of a computer hologram. Fiber 
length was varied by truncating fiber parts of length of 
approximately 1 cm. Radiation from the exit end of the 
fiber was led by a 20x microobjective and projected onto 
a screen. We measured value and sign of rotation angles 
of linear polarization ψ and axis of degenerated boundary 
dislocation χ. 

Figure 4 presents the sequence of photo pictures of 
the near radiation field from the end of the fiber. The 
interference experiment detected a topological charge |σl| =1 

in fields with pronounced central minimum of intensity. 
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FIG. 3. The experimental unit for studying the CP11 mode: He-Ne laser (1); dividing prism (2, 11); polarizer (3, 
9, 13); mirror (4, 8); 20x microobjective (5,7); low-mode fiber (6); slab λ/4 (10, 12); lens (14); screen (15); 
computer hologram (16). 
 

 
 
FIG. 4. Photo pictures of the near radiation field of a low-mode fiber in the generalized Rytov$Magnus effect. 
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Figure 5 presents the plots of rotation angles of 
the axis of degenerated boundary dislocation χ and 
azimuth of linear polarization ψ as functions of fiber 
length z. 

 

 
 

FIG. 5. Rotation angle of azimuth of linear 
polarization ψ and that of the axis of boundary 
dislocation χ in the radiation field of the CP11 mode 
as functions of length z: ρ = 3.5 μm; nco = 1.48; 
V = 3.6; Δ ≈ 10$3; λ = 0.63 μm. 

 
If the fiber is excited by a LV vortex with 

σl = +1, purely helical dislocations detected in the 
radiation field are also exclusively with σl = +1. 
Similarly, with exciting the fiber by a right circularly 
polarized CP11 mode with σ = +1, only helical 
dislocations with σl = +1 are detected in the radiation 
field. And otherwise, with exciting the fiber by a LV 
vortex with σl = $1 (or a CP mode with σ = $1), only 
helical dislocations with σl = $1 are detected. 

As it was just supposed theoretically, the values of 
the angle of linear polarization ψ and angle χ of 
rotation of the axis of boundary dislocation linearly 
depend on the length z within the experimental error, 
but have opposite signs (see Eqs. (32) and (35)). The 
experiment yields the value of topological birefringence 
equal to δnT = (2.3 ± 0.08)⋅10$6 (the theoretical value 
of birefringence is δnT = 3⋅10$6 what is obtained from 
Eqs. (32), (33), and (35)). 

 
7. CONCLUSION 

 
Circularly polarized homogeneous and 

inhomogeneous CV vortices and azimuthally symmetrical 
linearly polarized TE and TM modes are eigenmodes of 
optical multimode fibers. A pair of numbers, topological 
charge σl and polarization iσ, corresponds to each CV 
vortex and characterizes the state of the vortex: 
⎮σl, iσ >. TE and TM modes are represented by 

connected vortices ⎮+ 1, $ 1 > ±⎮$ 1,+ 1 >. Each of these 
partial vortices cannot exist independently. 

The propagation constant of an optical vortex in 
the free space is fourfold degenerated with respect to 
the topological charge l and circulation of wave 
polarization σz. In the medium of a low-mode fiber, 
the line of the propagation constant is split in the 
proper vortex due to spin-orbit interaction. This 

corresponds to generation of homogeneous CV 

σ
σl and 

inhomogeneous CV 

σ
σl vortices. The value of the 

propagation constant splitting β
∼
 is determined by the 

polarization correction δβ. The vortex propagation 
constants are twofold degenerated with respect to l and 
σ. 

The splitting of propagation constants β
∼
 is 

caused by accumulation of the Berry phase. In its 
turn, the topological phase γT represents the result of 
parallel displacement along the line of energy flow of 
a directed vortex mapped onto a sphere in the pulse 
space. Besides, the topological phase γT can be 
considered as a result of spin-orbit interaction in the 
field of an optical vortex. The process of this spin-

orbit interaction is characterized by the operator V
^
 

whose mean physical value equals to the polarization 

correction δβ
∼
 to the propagation constant β

∼
 

proportionally to proper time of the directed vortex 
and depends on distribution form of the refractive 

index n2(R) of a low-mode fiber. 
Spin-orbit interaction is selective in its action 

upon the fields of CV vortices and causes circular 
birefringence δnC. Linear birefringence δnL which is 

characterized by the polarization correction β(1) arises 
in the fields of TE and TM modes. In gradient fibers, 
the orders of circular and linear birefringence are as 

follows: δnC ∼ (λ/ρ) and δnL ∼ (λ/ρ)3, respectively 
(ρ is the fiber radius). The orders of δnC and δnL are 
similar in stepwise fibers. 

To characterize birefringence in crystals, it is 
sufficient to assign the basis of wave polarization. As 
for a locally isotropic medium of optical fibers, it is 
necessary to assign the topological charge σl together 
with the polarization basis iσ. 

In fibers, circular and linear birefringence can 
act simultaneously and are united by a common term, 
namely, topological birefringence. Experimentally, 
topological birefringence is exhibited as the joint 
Rytov$Magnus effect. Structural instability of an IV 
vortex is also a result of linear birefringence in fibers. 
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