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It is shown that the measuring base of an instrument testing a large-aperture 

surface shape by the overlap-scanning method can be considered as a filter of 

spatial frequencies.  In this case, the complex amplitude of the filter is described 

by a function with parameters depending on the measuring base length and 

configuration of the instrument.  Some results supporting appropriateness of this 

model in practice are presented. 

 
The overlap-scanning method is rather widely used 

in optical measurements.1$5 It consists in subdividing a 
tested surface (Fig. 1) of a large aperture into k parts, 
every of which is tested sequentially with a small-
aperture instrument.  The total error ΔN for a profile of 
the whole surface depends on the number k of 
instrument stops and is estimated as follows 1: 

ΔN = Δn k, 

where Δn is the error of profile estimation for one part.  
Degradation in measurement accuracy is caused by loss 
of information about a position of the measuring base 
(elementary aperture) in space.  As a result, filtration 
of spatial frequencies in the shape of the tested surface 
occurs, and the necessity to connect results of 
individual elementary measurements arises.  The 
technique and algorithms for the connecting procedure 
are subjects of most papers on the overlap-scanning 
method.6$9 From the practical point of view, filtering 
properties of an elementary aperture are of no less 
interest as well. 
 

 
FIG. 1. Geometry of large-aperture surface testing by 
making use of small apertures. 
 

Interference and shadow schemes, which are 
traditionally used for surface shape tests in optical 
instrument making, can be considered as integral ones 
in the sense that tests yield some information about 
deviation of the tested surface as a whole from a certain 
nominal reference surface.  From this point of view, the 
testing scheme utilizing the overlap-scanning method 
should be considered as a differential technique.  In 
this case, the concept of a surface shape (profile) 
becomes indefinite because one can say only about some 
its realization depending on random factors associated 
with selection of the reference surface at each particular 
stop of the elementary aperture.  In view of special 
importance of the latter, below the elementary aperture 
will be called the measuring base. 

Since the measuring base changes its spatial 
orientation in the overlap-scanning process, it should be 
expected that some information about the tested surface 
may be lost.  It is the information about large-scale 
deviations of the profile; however, the information 
about small deviations will be revealed rather 
comprehensively.  Therefore, we can suppose that 
spatial frequencies of the tested surface are filtered in 
the process of measurements by the overlap-scanning 
method. 

Filtering properties of the measuring base are not 
always negative.  With a priori information about the 
spectrum of spatial frequencies, the size of the 
measuring base can be selected so that all the required 
information about the surface quality will be preserved. 

Let us consider Fig. 2.  Suppose that a surface, 
whose profile is described by the function y(t), where t 
is the coordinate along the surface, is studied with the 
measuring base of length 2T.  The ends of the 
measuring base are fixed at the surface points tB and 
tE.  Then, as the measuring base moves, the instrument 
measures the modified function Y(t) described by the 
relation 
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Y(t) = ⎣
⎡

⎦
⎤y(tB) + y(tE)

2  $ y(t)  cos α,  (1) 

where α is the angle between the measuring base and 
the axis; Y(t) is the sag of the function y(t) within the 
measuring base. 

 
FIG. 2. On derivation of Eq. (3): the measured profile 
(1). 
 

Coordinates of the points of contact of the surface 
and the measuring base can be written in the following 
form: 

tB = t $ 2Tλ cos α , 

tE = t + 2T(1 $ λ) cos α , 

where λ is the coordinate of the point t about the 
leading edge of the measuring base divided by its 
length. 

Applying the Fourier transform to the function 
Y(t) and using the well-known theorems of the Fourier 
analysis,10 we obtain 

F(Y(t)) = F(y(t)) ϕ(ξ) ,  (2) 

where F(y(t)) and F(Y(t)) are the Fourier transforms 
of the functions y(t) and Y(t), respectively; ϕ(ξ) is the 
function describing the filter transmittance, 
 

ϕ(ξ) = 
 

= ⎣
⎡

⎦
⎤exp (2πiξλ2Tcos α) + exp ($2πiξ(1 $ λ)2Tcos α)

2  $ 1  × 
 

× cos α .  (3) 
 

This function depends on the parameters of the 
measuring base. They are the relative coordinate 
 = (y $ yB)/2T, the angle α as a characteristic of the 

surface curvature, and the length of the measuring base 
2T. Fulfillment of Eq. (2) proves the above-stated 
supposition about the filtering properties of the 
measuring base. 

With these parameters known, the measured 
function y(t) can be reconstructed from values of the 
function Y(t) by making use of the well-known 
relation10 
y(t) = Y(t) ⊗ F(1/ϕ(ξ)) .  (4) 

Restrictions in applying relation (4) are evident: 
$ the domain of the functions y(t) and Y(t) must 

be (-∞; ∞), that is, the number k of measuring base 
stops must be sufficiently large. Signals with a finite 
domain require solution of the problem about their 
correct analytic continuation; 

$ spatial frequencies ξir, for which ϕ(ξir) vanishes, 
must be excluded from the domain. Since the values of 
ξir depend on parameters of the measuring base, the 
latter must be selected based on a priori information. 
The signal power spectrum at these points must be zero. 

To study properties of the function ϕ(ξ), let us 
assume the following: 

$ the tested surface is plane, i.e., α ≈ 0 and 
cos α ≈ 1; 

$ the sag is measured at only one point lying in 
the middle of the measuring base, that is, λ = 1/2. 

In this case, from Eq. (3) we have the complex 
amplitude 

 

ϕ(ξ) = 
exp (2πiξT) + exp ($2πiξT)

2  $ 1 = 

= cos 2πξT $ 1 . (5) 

 

The amplitude$frequency characteristic of this 
filter 

| ϕ(ξ) | 
2
 = 1.5 + 

1

2
 cos (4πξT) $ 2 cos (2πTξ) 

is presented in Fig. 3. 
 

 
 

FIG. 3. The amplitude$frequency characteristic of the 
filter described by Eq. (5). 
 

The filtering properties of the measuring base were 
simulated by the harmonic function y(t) = cos 2πξT.  A 
result of measurements of the surface profile described 
by the function y(t) with the measuring base of length 
2T was simulated using relations (1), (2), and (5). 
Simulation results are presented in Fig. 4 for different 
values of ξ and T. Analysis of these plots shows 
sufficient identity of relations (1) and (4) for Tξ ≠ n, 
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where n = 0, 1, 2 ... . For Tξ ≈ n, due to error 
accumulation during calculation of the convolution 

integral, high-frequency oscillations of the function 
Y(t) arise (Fig. 4d, the right-hand plot). 

 
FIG. 4. Results of numerical simulation of measurements of the harmonic signal y(x) = cos 2πξT with the measuring 
base of length 2T: ξT = 0.25 (a); ξT = 0.3 (b); ξT = 0.1 (c); ξT = 1.0 (d). The left-hand plots are obtained from 
relation (1), that is, by direct simulation; the right-hand plots are obtained from convolution by Eq. (4) with the 
amplitude-frequency characteristic of the filter. 
 
 

The possibility to filter out undesired spatial 
frequencies is an interesting application of the measuring 
base.  Such a situation arises in surface shape testing as 
applied to, e.g., extended objects. Extended objects differ 
from others by significant dependence of their shape on 
arrangement of supports, on which such an object rests.  
As supports are changed, elastic deformation of the object 

changes under the action of gravity.  Therefore, the 
concept of the surface shape becomes indefinite.  
However, while such objects (for instance, rails) are in 
use, they must be mounted on supports, which can be 
adjusted to compensate for these random elastic 
deformations.  Against this background, regular 
deformations of the profile caused by technology 
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imperfections play a significant part.  To overcome the 
ambiguity, a technique to measure profiles of extended 
objects can be proposed, in which the measuring base 
plays an important part.  The proposed technique features 
the following: 

$ the surface profile of the extended object is 
tested with the measuring base; 

$ the length of the measuring base must be chosen 
so that the tested object can be considered rigid within 
it, that is, the sag of the extended object on this base is 
independent of support arrangement. 

In other words, the measuring base of length 2T 
must filter out spatial frequencies ξir of the real profile, 
which represent irregular deformations of the object.  
Complete filtration of frequencies ξir means that the 
amplitude$frequency characteristic (see Fig. 3) 
vanishes at the points, where the condition ξirT = n is 
fulfilled.  At the same time, the filter must pass 
frequencies ξr corresponding to regular deformations. 
The difference between ξir and ξr determines the success 
of measurements.  If the difference is significant, then 
taking T = 1/ξir we can succeed in the measurements. 

As an example, we present some results obtained 
for a system detecting non-straightness of rails in the 
process of transportation on a roller conveyer. Since 
rollers are wore irregularly, supports are activated 
randomly what results in irregular deformations of the 
roller face of a rail. Thus, to filter out this frequency 
efficiently, the length of the measuring base must be 
chosen so that ξirT = 1, therefore, 

2T = 2/ξir = 1.5. 

The instrument with such measuring base allows 
the spatial frequency ξr satisfying the condition 

ξ0.5
r

 = 
0.5
T

  = 
0.5
0.75 = 

1
1.5 . 

to be revealed most efficiently on the profile.  
The transmission coefficient for this frequency is 

|ϕ(ξ0.5
r

)| = 1 $ cos (2π 0.5) = 2 . 
The spectrum of defects due to technology 

imperfections is concentrated just near this frequency.  
The most interesting frequency of the regular 
component of deviations from straightness, from the 
technological point of view, 

 

ξ0.23
r

 = 
1

3.2 

is transmitted by the measuring system with the 
transmission coefficient (5) | ϕ(ξ0.23

r
)| = 1 $ cos (2π 0.23) ≈ 

≈ 1. Thus, this frequency (Fig. 4a) is most adequately 
represented by the measuring instrument with the base 
2T = 1.5 m. 

The described method has been implemented in a 
rail straightness test system in the rail-rolling mill of 
the Kuznetsk metallurgic plant.12 Operation and 
metrological examination of the system have 
demonstrated its high efficiency for revealing "bottle 
necks" of the technology from the viewpoint of causes 
of rail waviness. 
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