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For the first time the Fermat variational principle, known in geometric optics, is used to analyze 

the acoustic Doppler effect. On its basis, exact and physically vivid analytical formulas have been 
derived for the Doppler effect in the general case of sound propagating in a three-dimensional 
inhomogeneous moving medium. 

 

Introduction 
 

The Doppler effect, consisting in the difference 
between the recorded frequency of oscillations ωr and 
the frequency of oscillations emitted by a source ωs 
when the source or the receiver moves, is observed for 
all wave phenomena − optical, acoustic, and others. Its 
treatment depends on whether one can take into 
account only the velocity of relative motion of the 
source and the receiver ν or the velocities of motion of 
the source w and the receiver u relative to the medium 
should be considered.1$3 

For sound waves, undoubtedly, the second case is 
true: they can propagate only in a material medium (for 
example, in a gas), and the velocities of motion of the 
source and receiver are always considered separately.  
In particular, the classical formula for the acoustic 
effect in a homogeneous stationary medium has the 
form1,2 

 ωr = ωs 
1 $ n⋅u/c

1 $ n⋅w/c
 , (1) 

where c is the velocity of sound propagation in the 
stationary medium, and n is the normal to the 
wavefront. From Eq. (1) it follows that in acoustics 
the formulas for the Doppler effect differ for the 
stationary source (w = 0) and the stationary receiver 
(u = 0). Therefore, measurements of the acoustic 
Doppler frequency shift, in principle, allow one to 
judge not only the velocity of relative motion of the 
source and receiver ν = w $ u, but also the velocities of 
motion of the source and receiver relative to the 
medium (w and u). Moreover, if in Eq. (1) we proceed 
to new coordinates, in which the medium moves with 
velocity v, the formula for the acoustic Doppler effect 
also will include v, that is, the movement of the 
medium can be detected directly from measurements of 
the frequency ωr. 

Before the advent of the special relativity theory 
(SRT) it was believed that the essence of the Doppler 
effect for the electromagnetic waves did not differ from 
the analogous phenomenon for sound. Moreover, it was 
considered that the basic electrodynamic equations were 
valid only in one inertial system of coordinates named 

the absolute reference system, stationary relative to 
global ether, which was understood as a special medium 
− the carrier of the electromagnetic processes, which 
fills in the whole space and any matter. Negative result 
of the well-known experiments on detection of an 
ethereal wind and other experimental data confirming 
consequences of the SRT abandoned the hypothesis of 
global ether. From the relativistic viewpoint, the 
Doppler formula for the electromagnetic waves should 
include only the velocity of relative motion of the 
source and receiver ν, that is, it should be independent 
of the choice of the inertial system of coordinates. For 
example, in optics the formula for the Doppler effect in 
the vacuum is usually written as1,2 

 ωr = ωs 
1 $ υ2/c

2
e 

1 $ υ⋅s/ce
 , (2) 

where ce is the velocity of light in the vacuum, and s is 
the unit vector tangential to an optical ray. 

The well-known facts have been stated above to 
emphasize the principal importance of consideration of 
possible movement of the medium in the formulas for 
the acoustic Doppler effect. The situation is 
complicated by the fact that the movement of realistic 
media, in which the sound waves can propagate, is 
nonuniform very frequently. For example, in the 
atmosphere the wind velocity depends on the 
coordinates and time. Thus, it appears impossible to 
find the absolute coordinate system, stationary relative 
to the entire region of the medium influencing the 
sound propagation. Even a case is possible, in which 
the sound source and the receiver are completely 
entrained by the moving medium and, hence, each of 
them is stationary relative to it; nevertheless, owing to 
their motion relative to each other, the Doppler effect 
may take place. 

The Doppler effect for the sound waves 
propagating in the inhomogeneous moving medium was 
examined in Refs. 8$14. Unlike these works, below the 
variational principle is used for the first time for this 
purpose, well-known in mechanics and referred to as 
the Fermat principle in geometric optics. As 
demonstrated, this approach allows exact and 
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physically vivid formulas to be obtained for the 
Doppler effect in the general case of sound propagation 
in the inhomogeneous moving medium. 

 

General solution 
 
Let the point-size sound source and receiver move 

with velocities w and u in the continuous 
inhomogeneous medium also moving with nonuniform 
subsonic velocity v(r). The positions of the source and 
receiver in the coordinate system L, in which the 
velocities w, u, and v(r) are specified, will be described 
by variable radius-vectors rs(t) and rr(t).  Let us also 
assume that the source emits harmonic oscillations, 
whose phase in the moving coordinate system L′, 
affixed to it, is described by the function of time Φs(t′) 
= ωst′ + Φ0, where ωs = äΦs(t′)/ät′ is the circular 
frequency of these oscillations (in the coordinate system 
L′).  

It is obvious that the wave perturbation with the 
given phase, originated at time ts at the point of sound 

emission r′
r = r′

s(t′
r), for the reason of finite velocity of 

its propagation, will reach the point of reception  

r′
r = r′

r(t′) in time τ ′ = t′ − t′
s ≠ 0. Therefore, Φ′(r′

r, t′) = 
= Φs(t′ − τ′), and hence using the expression for Φs(t′), 
we can write  

 Φ′(r′
r, t′) = Φs(t′) $ ωs τ′. (3) 

Let us take advantage of the phase invariance of 
the same wave in Eq. (3) for systems of coordinates L 

and L′ (See Refs. 1 and 2), expressed by the equality 

 Φ(rr, t) = Φ′(r′
r, t′), (4) 

where rr, t and r′
r, t′ are the coordinates and times of 

the same event in coordinate systems L and L′, 
respectively, related by the Galilean transformation in 
acoustics.  

For the Galilean transformation, t = t′ and hence 
τ = τ′, where τ = t − ts is the time of sound propagation 
from the point rs(ts) to the point rr(t) in the stationary 
system of coordinates L. Therefore, substituting Eq. (3) 
into Eq. (4), we obtain 

 Φ(rr, t) = Φs(t) $ ωs τ. (5) 

The frequency of sound oscillations, recorded by 
the receiver (in the coordinate system L′′, moving with 
the receiver with the velocity u), can be found from the 
formula 

 ωr = ∂Φ′′[rr( t′′)]/∂t′′, (6) 

whose applicability limits were examined in Ref. 7. 
Here, they were taken into account in problem 
formulation. 

By virtue of invariance of the wave phase, on 

account of the formulas for the Galilean transformation, 
in Eq. (6) Φ′′[rr(t′′)] = Φ(rr, t) and t′′ = t, that is, 
∂Φ′′[rr(t′′)]/∂t′′ = ∂Φ(rr, t)/∂t. As a result, on 
account of Eq. (5), the general formula for the Doppler 
effect in acoustics follows from Eq. (6): 

 ωr = ωs {1 − ∂τ[rs(ts), rr(t)]/∂t}, (7) 

which imposes no restrictions on the character of 
inhomogeneities in the medium and considers the 
functional dependence of τ on the coordinates of the 
source and the receiver. 

Formula (7) demonstrates that the Doppler 
frequency shift of the received sound oscillations is 
caused only by changes in the time of sound signal 
propagation (or in the wave energy) from the source to 
the receiver. 

 

Derivation of the formulas  
for the acoustic Doppler effect 

 
Let the medium satisfies to the condition of 

applicability of the geometric acoustics equations 
λ << a, where λ is the acoustic wavelength, and a is the 
characteristic size of inhomogeneities of the medium. In 
this case, the time of sound propagation τ from one 
point M1(x1, y1, z1) of the Cartesian space (x, y, z) to 
the other point M2(x2, y2, z2) can be obtained from the 
formula 

 τ = ⌡⌠
M1

M2

 
dl

U(M)
 (8) 

known in geometric acoustics (see, for example, 
Ref. 13). Here, the integration is carried out along the 
sound ray connecting points M1 and M2, dl is the 
element of arc length along the ray, U = | cn + v | is 
the modulus of the group velocity of sound in the 
coordinate system L (Ref. 7), c is the velocity of sound 
in the stationary medium, and n is the unit vector 
orthogonal to the wavefront. Formula (8) is valid for 
the general case of three-dimensional inhomogeneous 
moving medium. When the sound ray behavior is 
described by the parametric equations 

 x = x(σ),     y = y(σ),     z = z(σ), 

Eq. (8) also can be written as 

 τ = ⌡⌠
M1

M2

 
 (x′)2 + (y′)2 + (z′)2

U(x, y, z)
 dσ, (9) 

where x′ = ∂x/∂σ;  y′ = ∂y/∂σ;  z′ = ∂z/∂σ. 
Curvilinear integrals (8), in which the integrand F 

can be represented as in Eq. (9), that is, in the form 
F = F(x, y, z, x′, y′, z′), in variational calculus are 
referred to as functionals dependent on the integration 
contour. For each specific trajectory from M1 to M2 
they give specific numerical value of τ (Ref. 15). It is 
well known that the sound rays in the refracting 
medium satisfy the Fermat principle.16 According to 
this principle, the ray connecting the points M1 and 
M2, should coincide with the curve M1M2, for which 
functional (9) gives the least value of τ. In other 
words, the sound ray is the extremal of functional (9), 
described by the Euler equations15,17 
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∂

∂σ ⎝
⎛

⎠
⎞∂F

∂x′  $ 
∂F
∂x = 0, 

∂
∂σ ⎝

⎛
⎠
⎞∂F

∂y′  $ 
∂F
∂y = 0,  

 
∂

∂σ ⎝
⎛

⎠
⎞∂F

∂z′  $ 
∂F
∂z  = 0, 

where F is the integrand of Eq. (9).  
If we recall Eq. (7), we easily notice that 

formula (9) can be used to analyze the Doppler effect 
in the inhomogeneous moving medium, when it is 
considered as a functional whose end points M1 = 
= Ms[xs(ts), ys(ts), zs(ts)] and M2 = Mr[xr(t), yr(t), zr(t)] 
with the coordinates coinciding with those of the source 
and receiver at the moments of sound emission ts and 
reception t, respectively, are functions of time. For this 
problem it is convenient to introduce the curvilinear 
orthogonal system of coordinates17 (x0, y0, z0), in 
which one coordinate axis, for example x0, coincides at 
each point with the ray connecting Ms and Mr, and 
two others (y0 and z0) intersect it and each other 
perpendicularly at any point of the ray. This coordinate 
system is feasible, because all the extremals coming 
from a fixed point M0, form in the three-dimensional 
space the family of curves which do not intersect, 
except at the point M0, that is, the family of extremals 
has only one extremal that passes through the given 
point15 M ≠ M0. As a consequence, any point 
M(x, y, z) in the vicinity of ray MsMr is an 
unambiguous function of x0, y0, z0.  

In the new system of coordinates, Eq. (9) can be 
written as 

 τ = ⌡⌠
x
0

s(ts)

x
0

r(t)

  
 1 + (∂y0/∂x0)2 + (∂z0/∂x0)2

U(x0, y0, z0)
 dx

0, (10) 

where x
0
s(t) and x

0
r(t) are the x0 coordinates of the 

points Ms and Mr, respectively. Applying to Eq. (10) 
the general formula for the first variation of the 
functional whose ends are movable,15,17 we obtain 

 δτ = 
⎣
⎡

⎦
⎤∂τ

∂x0 δx
0 + 

∂τ
∂y0 δy

0 + 
∂τ
∂z0 δz

0  
x0 = x

0

r(t)

x0 = x
0

s(ts)

+ 

+ ⌡⌠
x
0

s(ts)

x
0

r(t)

 
⎩
⎨
⎧

⎭
⎬
⎫

 

⎣
⎡

⎦
⎤∂F

∂y0 $ 

∂
∂x0 ⎝

⎛
⎠
⎞∂F

∂y0  δy0
 + 

⎣
⎡

⎦
⎤∂F

∂z0 $ 

∂
∂x0 

⎝
⎛

⎠
⎞∂F

∂z0  δz0
 dx

0, 

 (11) 

where F is the integrand of Eq. (10), and Q
x

x

1

2  

denotes, as usually, the double substitution, that is, 

Q
x

x

1

2  = Q(x2) $ Q(x1). 

The integral term in Eq. (11) is identically equal 
to zero, because the integral is taken over the extremal. 
Therefore, on account of the formula13 
τ = ψ[rs(ts), rr(t)]/c0, which expresses τ in terms of the 
increment of the eikonal ψ along  the ray MsMr (here, 
c0 is the characteristic value of the sound velocity c in 
the medium, for example, c0 = c(0)), from Eq. (11) we 
obtain 

δτ = 
1
c0

 
⎣
⎡

⎦
⎤∂ψ

∂x0 δx
0 + 

∂ψ

∂y0 δy
0 + 

∂ψ

∂z0 δz
0  

x0 = x
0

r(t)

x0 = x
0

s(ts)

. (12) 

Taking into account that the first variation of the 
functional is the main (linear) part of its increment, 
and assuming that the coordinates of the mobile points 

Mr(x
0
r, y

0
r, z

0
r) and Ms(x

0
s, y

0
s, z

0
s) at the end depend 

solely on the parameter t, from Eq. (12) we derive 

 
∂τ
∂t = 

1
c0

 
⎩⎪
⎨
⎪⎧ ∂ψ

∂x0
r

 
∂x0

r

∂t  + 
∂ψ

∂y0
r

 
∂y0

r

∂t  + 
∂ψ

∂z0
r

 
∂z0

r

∂t  $ 

 $ 
⎭⎪
⎬
⎪⎫∂ψ

∂x0
s

 
∂x0

s

∂ts
 
∂ts
∂t  $ 

∂ψ

∂y0
s

 
∂y0

s

∂ts
 
∂ts
∂t  $ 

∂ψ

∂z0
s

 
∂z0

s

∂ts
 
∂ts
∂t  . 

The last expression, on account of the equality 
∂ts/∂t = 1 − ∂τ/∂t, is transformed to the formula 

 
∂τ
∂t = 

Ar + Br $ As $ Bs

1 $ As $ Bs
 , (13) 

where for brevity of presentation, the intermediate 
designations 

 Ar = 
1
c0

 
∂ψ

∂x0
r

 
∂x0

r

∂t  , Br = 
1
c0

 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂ψ

∂y0
r

 
∂y0

r

∂t  + 
∂ψ

∂z0
r

 
∂z0

r

∂t  , 

 As = 
1
c0

 
∂ψ

∂x0
s

 
∂x0

s

∂ts
 , Bs = 

1
c0

 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫∂ψ

∂y0
s

 
∂y0

s

∂ts
 + 

∂ψ

∂z0
s

 
∂z0

s

∂ts
 .  (14) 

were introduced.  
Substituting Eq. (13) into Eq. (7), we derive the 

preliminary variant of the formula for the Doppler 
effect in the form 

 ωr = ωs 
1 $ Ar $ Br

1 $ As $ Bs
 , (15) 

in which coefficients As, Bs, Ar, and Br should be 
specified. 

The rates of change of the coordinates of points 

Ms(x
0
s, y

0
s, z

0
s) and Mr(x

0
r, y

0
r, z

0
r) are determined by 

the velocities of the source w and receiver u. Therefore, 
in Eq. (14) 

 
∂x0

s(ts)

∂ts
 = w ⋅ e0

x(Ms),   
∂y0

s(ts)

∂ts
 = w ⋅ e0

y(Ms),  

 
∂z0

s(ts)

∂ts
 = w ⋅ e0

z(Ms),   
∂x0

r

∂t  = u ⋅ e0
x(Mr),  

 
∂y0

r

∂t  = u ⋅ e0
y(Mr),   

∂z0
r

∂t  = u ⋅ e0
z(Mr), (16) 

where (e0
x, e

0
y, e

0
z) is the local orthonormal basis of the 

coordinate system (x0, y0, z0). We note that in the 
curvilinear coordinate system the orientation of the 
local basis may change from point to point. Here, the 
coordinate system (x0, y0, z0) was introduced so that 

 e
0
x(Ms) = ss   and   e0

x(Mr) = sr,  (17) 

where ss and sr are the unit vectors tangential to the 
ray MsMr at its end points Ms and Mr (in the 
refractive medium, as a rule, ss  ≠ sr). 
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Because the derivative of the scalar function 
f(x, y, z) with respect to the direction is equal to the 
projection of its gradient gradf = ∇f onto the given 
direction, in Eq. (14) we also have 

 
∂ψ

∂x0
s

 = {e0
x ∇ψ}  

M = Ms

 = e0
x(Ms) ∇sψ, 

 
∂ψ

∂y0
s

 = {e0
y ∇ψ}  

M = Ms

 = e0
y(Ms) ∇sψ, 

 
∂ψ

∂z0
s

 = {e0
z ∇ψ}  

M = Ms

 = e0
z(Ms) ∇sψ,  

 
∂ψ

∂x0
r

 = {e0
x ∇ψ}  

M = Mr

 = e0
x(Mr) ∇rψ, 

 
∂ψ

∂y0
r

 = {e0
y ∇ψ}  

M = Mr

 = e0
y(Mr) ∇rψ, 

 
∂ψ

∂z0
r

 = {e0
z ∇ψ}  

M = Mr

 = e0
z(Mr) ∇rψ, (18) 

where ∇s = ⎝
⎛

⎠
⎞∂

∂xs
 + 

∂
∂ys

 + 
∂

∂zs
 and ∇r = ⎝

⎛
⎠
⎞∂

∂xr
 + 

∂
∂yr

 + 
∂

∂zr
 

are the operators of differentiation with respect to the 
points Ms and Mr in the Cartesian coordinate system 
(x, y, z). 

In Eq. (18) we take advantage of the Blokhintsev 
eikonal equation7: 

 ⏐∇ψ⏐ = c0/c (1 $ v∇ψ/c0), (19) 

which is modified here as follows. Because 
∇ψ = ⏐∇ψ⏐n, Eq. (19) can be reduced to the vector 
equation 

 ∇ψ(r) = n(r) c0/W(r),  (20) 

where W = c + v⋅n is the phase velocity of sound in the 
coordinate system L. Below we express the vector ∇ψ 
in Eq. (20) in terms of two orthogonal components: 
along the ray and transverse to it. With this purpose, 
let us examine Fig. 1, where η denotes the angle 
between the normal n and the unit vector s, tangential 
to the ray, and ϕ denotes the angle between the vectors 
v and s. Because the angle between v and n is equal to 
ϕ + η, we have 
 v⋅n = v cos(ϕ + η) = vs cos η $ v

⊥s sin η, 

where vs = v cosϕ and v⊥s = v sinϕ are the longitudinal 

(vs) and transverse (v⊥s) components of the vector v 

relative to the ray.  Therefore, taking into account the 
equalities cosη = W/U and sinη = v⊥s /c, we obtain 

 n = s W/U $ v⊥s /c. (21) 

Substituting Eq. (21) into Eq. (20), we derive the 
equation for the eikonal gradient  

 ∇ψ = 
c0

U
 s $ 

c0

c
 
v
⊥s

W
 , (22) 

the right side of which is the difference between two 
orthogonal vectors. 

On account of Eqs. (16)$(18) and (22), 
formulas (14) assume the form 

 Ar = u⋅sr/Ur, 

 Br = $ {(u⋅e0
y(Mr)) (v⊥s(Mr)⋅e0

y(Mr)) + 

 + (u⋅e0
z(Mr)) (v⊥s(Mr)⋅e0

z(Mr))}/(cr Wr), 

 As = w⋅ss/Us, (23) 

 Bs = $ {(w⋅e0
y(Ms)) (v⊥s(Ms)⋅e0

y(Ms)) + 

 + (w⋅e0
z(Ms))(v⊥s(Ms)⋅e0

z(Ms))}/(csWs), 

where Ws = cs + vs⋅ns; Wr = cr + vr⋅nr; 
Us = ⏐cs ns + vs⏐; Ur = ⏐cr nr + vr⏐; ns = n(Ms); 
nr = n(Mr); cs = c(Ms); cr = c(Mr); vs = v(Ms); 
vr = v(Mr) are the values of the parameters of the 
sound wave and the medium at the end points of the 
ray MsMr. 
 

 
 

Fig 1. Geometric relationships of the phase (W) and group 
(U) velocities of sound with the normal to the wavefront n 
and the unit vector s, tangential to the ray, in the medium 
moving with the velocity v. 

 

The expressions for Br and Bs in Eq. (23) are 
affixed to the orientation of the axes of the curvilinear 
coordinate system (x0, y0, z0) transverse to the ray. At 
the same time, this coordinate system was introduced in 

such a manner that the orientation of its unit vectors e0
y 

and e0
z in the plane orthogonal to e0

x was unimportant 
for the problem at hand and can be arbitrary. For vivid 
presentation of final results, it is most convenient to 
specify it in the above-indicated plane relative to the 
direction of physical significance. Let, for example, the 

unit vector e
0
y at the point Mr be directed along the 

vector v⊥s(Mr), that is, e
0
y(Ms) = v⊥s(Ms)/v⊥s(Ms). 

Then the expression for Br from Eq. (23), by virtue of 

orthogonality of e
0
y and e

0
z, is transformed to the 

formula 

 Br = $ {u⋅v
⊥s(Mr)}/(crWr). 

If we denote by u⊥s = u − (u⋅sr)⋅sr the component of the 

receiver velocity u, transverse to the direction of sound 
propagation, in view of the identity 
u⋅v⊥s(Mr) ≡ u⊥s⋅v(Mr), the last expression for Br also 

can be written as 
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 Br = $ u⊥s⋅vr/(cr Wr). (24) 

In analogy with Eq. (24), the expression for Bs has the 
form 

 Bs = $ w⊥s⋅vs/(cr Wr), (25) 

where w⊥s = w − (w⋅ss)⋅ss is the component of the 
source velocity w transverse to the direction of sound 
propagation.  

Substituting Eqs. (23)$(25) into Eq. (15), we 

obtain 

 ωr = ωs 
1 $ u⋅sr/Ur + u⊥s⋅vr/(cr Wr)

1 $ w⋅ss/Us + w⊥s⋅vs/(cs Ws)
 . (26) 

Formula (26) is the final formula for the acoustic 
Doppler effect in the three-dimensional inhomogeneous 
moving medium, in which the velocities of the source 
and receiver are considered relative to the physical 
direction of wave propagation specified by the vectors 
ss and sr. 

The other variant of the Doppler formulas, 
alternate to (24), is also known, in which the above-
indicated velocities are considered relative to the 
normal to the wavefront n = ∇ψ/⏐∇ψ⏐ (or relative to 
the wave vector K = k0∇ψ, where k0 = ω/c0). In 
particular, classical formula (1) for the acoustic 
Doppler effect in the homogeneous stationary medium 
has this form. To reduce formula (26) to Eq. (1), we 
take advantage of the equalities w⊥s⋅v(Ms) ≡ w⋅v⊥s(Ms) 
and u⊥s⋅v(Mr) ≡ u⋅v⊥s(Mr).  Substituting them into 
Eq. (26), on account of Eq. (21) we obtain 

 ωr = ωs 
1 $ nr⋅u/Wr

1 $ ns⋅w/Ws
 . (27) 

The choice of the reference (conventionally 
stationary) system of coordinates L, in which the 
motion of the source and receiver is considered, 
generally speaking, is arbitrary and is dictated only by 
the convenience of physical interpretation of the 
Doppler effect. For example, in acoustics of the 
atmosphere and ocean the system of coordinates L^, 
affixed to a certain point of the Earth’s surface, is 
considered stationary. One more widespread variant of 
the stationary system of coordinates is affixed to the 
receiver (in this case, L = L′′). The reason of the last 
choice is that the observer, who measures the sound 
frequency, is usually near the receiver and, as a rule, 
moves with it (for example, on board an aircraft or a 
ship). In this case, in analogy with the SRT (Refs. 1$
3), it is convenient to introduce the notion of the relative 
velocity of the source and receiver  υ = w − u, equal to 
the source velocity w′′ in the coordinate system L′′. 

It is not difficult to transform formula (27) at the 
transition from one coordinate system L to the other 
L^, moving relative to the first system with a constant 
velocity m (the condition of inertial systems). The rule 
of addition of velocities, following from the Galilean 
transformations, has the form 

 v = v^ + m, 

where v and v^ are the velocities of a material point in 
coordinate systems L and L^. It is also known1 that 
from the invariance of the wave phase, the invariance 
of the normal to the wavefront follows (in this case, 
this is true for ns and nr). Therefore, the Doppler effect 
in the new coordinate system L^ is described by the 
formula formally identical to Eq. (27) 

 ωr = ωs 
1 $ nr⋅u^/W 

^
r

1 $ ns⋅w^/W 

^
s
 , 

where u^
 = u $ m; w^ = w $ m; W 

^
s = cs + v^

s⋅ns; W 

^
r = 

= cr + v 

^
r⋅nr; v^

s = vs $ m and v 

^
r = vr $ m.  In the 

coordinate system L′′, affixed to the receiver, the 
Doppler formula has the form ωr = ωs/(1 $ nsυ/W′′s ), 
analogous to the formula which follows from Eq. (27) 
in case of the moving sound source only.  

The simplicity of these final formulas for the 
acoustic Doppler effect in the inhomogeneous moving 
medium is apparent. To estimate the Doppler frequency 
shift from these formulas, the refraction problem on the 
orientation of the vectors ss and sr (or ns and nr) 
should be additionally solved. This class of problems 
can be solved analytically only for a stratified medium 
with the use, as a rule, approximate methods (see, for 
example, Refs. 9 and 18). 

In many cases it is required to reconstruct 
numerically the trajectory of the sound ray from the 
source to the receiver by its computer calculation for 
the given spatial distributions of c(r) and v(r) (see 
Refs. 19 and 20). 

 

Analysis of the results 
 

First of all we dwell on the physical meaning of 
formula (27) by its comparison with formula  (1). In 
classical formula (1), describing the Doppler effect in 
the homogeneous stationary medium, the adiabatic 
sound velocity c is simultaneously its phase velocity 
(W = c), and the vector n coincides with the normals 
to the wavefront at the points of sound emission 
(n = ns) and reception (n = nr). Therefore, based on 
Eq. (1), we conclude that the acoustic Doppler effect 
in the homogeneous stationary medium depends on the 
ratios of the projections of the source and receiver 
velocities onto the normal to the wavefront and to the 
phase velocity of wave propagation. In its turn, formula 
(27) demonstrates that this physical pattern is also 
observed for the inhomogeneous moving medium; 
moreover, because the values of these ratios differ at 
different points, they should be taken into account only 
for the end points of the ray connecting the source and 
the receiver. 

Formula (27) also can be used to study the Doppler 
effect when the source and the receiver are completely 
entrained by the nonuniform movement of the medium, 
that is, when they are stationary relative to the medium, 
but move relative to each other. In this case, w = vs  and 
u = vr, and on account of the formula for the phase sound 
velocity, Eq. (27) is reduced to the form 
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 ωr = ωs 
1 + ns⋅vs/cs

1 + nr⋅vr/cr
 . (28) 

Because in an inhomogeneous moving medium, as a 
rule, nsvs/cs ≠ nrvr/cr, from Eq. (28) it follows that 
the frequency shift of oscillations recorded by the 
receiver, in this case also should be observed.  

If we recall formula (2) for the optical Doppler 
effect in vacuum, we point out that when the direction 
of the observed optical ray is perpendicular to the 
velocity υ (for υ⋅s = 0), the transverse Doppler effect 
occurs, described by the formula 

 ωr = ωs 1 $ υ2/c
2
e. (29) 

This effect is manifested for the electromagnetic waves 
as a consequence of the SRT, namely, because of the 
unequal passage of times in the coordinate systems 
moving relative to each other. Therefore, its occurrence 
is usually indicated as a distinctive feature of the 
Doppler effect for the electromagnetic waves in 
comparison with the acoustic ones. 

From above-derived formula (26) it follows that in 
acoustics of the moving media the frequency shift of the 
received oscillations also can be observed when the 
wave propagates perpendicularly to the direction of 
motion of the source or the receiver, that is, when 
w⋅s = 0 or u⋅s = 0. The shift magnitude is given by the 
formula 

 ωr = ωs 
1 + u⊥s⋅vr/(cr Wr)

1 + w⊥s⋅vs/(cs Ws)
  

 or  ωr = ωs /{1 + υ v″
s/(cs W 

″
s)}, 

where v′′s  = vs − vr, which differs from Eq. (29). 
Because this phenomenon formally satisfies the 
definition of the transverse Doppler effect, it makes 
sense to use the same name for it.  

According to Eq. (26), the motion of the source or 
the receiver causes the change of time τ of sound 
propagation between them primarily due to the change 
of the geometric path length S along the ray trajectory 
connecting them, and by virtue of Eq. (7) causes the 
longitudinal Doppler effect. In this case, the 
contribution of the changes ΔU of the group sound 
velocity U along its propagation path to the Doppler 
frequency shift has considerably less effect because of 
small values of ΔU/U for realistic media. When the 
source or the receiver moves perpendicular to the 
direction of wave propagation, the sound wave arrives 
at the point of reception at each moment after passage 
along the new ray with different emission angles. These 
rays can be considered as one nonstationary ray 
connecting the source and the receiver, which bends 
depending on the instantaneous position of the source 
or the receiver. Because in the moving (anisotropic for 
sound waves) medium the group velocity of sound 
depends on the direction of wave propagation, ray 
bending will cause additional change of τ even for the 
fixed path length S. The last phenomenon described by 
Eq. (26) is referred to as the transverse Doppler effect. 

It should be noted that for the unit vector s that 
specifies the direction of sound wave propagation, the 
following formula is valid13 

 s = (n + v/c)/(1 + 2vn + v2/c2)1/2. 

The normal to the wavefront n, as already 
mentioned, is invariant. At the same time, in case of 
transition from one inertial system of coordinates to the 

other, moving relative to the first system, the velocity of 
the medium v changes. In this case, in accordance with 

the last formula, the direction of s also changes, i.e., 
the direction of sound wave propagation is not 
invariant. Therefore, the magnitude of the Doppler 
frequency shift caused by the transverse Doppler effect 
depends on the choice of the coordinate system. 

In case of the homogeneous moving medium 
(c(r) = const and v(r) = const), sr = ss = s, and Eq. (26) 
reduces to 

 ωr = ωs 
1 $ u⋅s/U + u⊥s⋅v/(c W)

1 $ w⋅s/U + w⊥s⋅v/(c W)
 , (30) 

where U = ⏐cn + v⏐ and W = c + v⋅n. Formula (30) 
demonstrates that the transverse Doppler effect can be 
observed even in the absence of refraction, when in the 
coordinate system L, in which this phenomenon is 
studied, the medium moves. However, it is easy to 
notice that unlike the general case c(r) and 
v(r) ≠ const, for the homogeneous moving medium we 
always can choose the absolute system of coordinates, 
in which v ≡ 0 and hence there is no transverse Doppler 
effect. In the absolute system of coordinates, Eq. (30) 
has the form 

 ωr = ωs 
1 $ u⋅s/U

1 $ w⋅s/U
 . 

Because in the stationary medium s = n and U = c, the 
last formula is identical to Eq. (1). 
 

Known formulas for the Doppler effect 
in acoustics 

 
The derivation of classical formula (1) for the 

acoustic Doppler effect in the homogeneous stationary 
medium, also starting from the invariance of the wave 
phase, was described, for example, in Refs. 1 and 2. 
Analogous formula was reported in Ref. 4 without 
derivation. At the same time, in Refs. 3 and 6 the 
formula analogous to Eq. (1), comprised, instead of 
w⋅n, the projection of w onto the direction p = {rr(t) − 
$ rs(t)}/⏐rr(t) − rs(t)⏐, along which the source is 
seen at the moment of reception of sound waves t. 
Because for the moving source the vectors n and p do 
not coincide, a mistake was introduced in Refs. 3 and 
6, second-order infinitesimal in w/c. The exact formula 
for the Doppler effect  in the homogeneous medium in 
terms of the projections of u and w on the direction p 
was derived by Blokhintsev.7 It comprised the 
quadratic term w2/c2. The formula for the frequency, 
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derived in Ref. 21, also contained w2/c2. However, 
because in this work the relative position of the source 
and the receiver was characterized by the normal n, its 
results are incorrect. 

In the system of coordinates, in which the 
homogeneous medium moves with the velocity v, the 
velocities of the source and receiver are equal to w − v 
and u − v, respectively. Substituting them in Eq. (1) 
and taking into account the invariance of n, we obtain  

 ωr = ωs 
1 + u⋅(v $ u)/c

1 + w⋅(v $ w)/c
 . 

This formula was given by Ostashev13 as the formula 
for the Doppler effect in the homogeneous moving 
medium. 

The acoustic Doppler effect in the inhomogeneous 
moving medium was considered for the first time in 
Ref. 8. The work was aimed at an analysis of errors in 
measuring the wind velocities with Doppler sodars 
(acoustic radars). However, several principal errors 
were committed in it. In particular, in Ref. 8 the 
length of the ray trajectory connecting the source and 
the receiver and hence the increment of the eikonal 
ψ(rs, rr) depended on the coordinates of the source at 
the moment of sound reception t, rather than at the 
moment of sound emission ts. This resulted in 
disappearance of the nonlinearity in the Doppler 
formula with respect to the velocity of the source w (or 
υ), well known in acoustics. In addition, Ref. 8 ignored 
ray bending with time, caused by the transverse 
component of the velocity of the source or receiver. 
Because of this, the contribution of the above-described 
transverse Doppler effect to the Doppler frequency 
shift ωd = ωr − ωs was not taken into account. It is not 
difficult to notice that the resulting relative error in 
estimating ωd in Ref. 8 was compared by the order of 
magnitude with ε = max{⏐v⏐/c0 << 1, 
⏐c − c0⏐/c0 << 1}. Therefore, from the results of this 
work the contribution of refraction to ωr cannot be 
estimated even with the accuracy of the linear 
approximation in ε.  

Our desire to correct the errors committed in 
Ref. 8 and to obtain the correct formulas for estimation 
of the influence of the atmospheric stratification on the 
operation of Doppler sodars considering the terms 
linear in ε has resulted in appearance of Refs. 9 and 10. 
Because the results obtained in Refs. 9 and 10 were of 
independent interest, later they were generalized in 
Ref. 11 for the three-dimensional inhomogeneous 
moving medium, where the transverse Doppler effect in 
acoustics of the moving media was pointed out for the 
first time.  

Simultaneously with Ref. 11, the Doppler effect in 

the three-dimensional inhomogeneous moving medium 
was also studied by Ostashev,12 who suggested the 
formula 

ωr = ωs 
1 + ss⋅vs/cs

1 + ss⋅(vs $ w)/cs
 
1 + sr⋅(vr $ u)/cr

1 + sr⋅vr/cr
 , (31) 

where ss and sr are the unit vectors directed from the 
source to the receiver in the coordinate systems moving 
with the velocities vs and vr, respectively.  

Formula (31) was derived in Ref. 12 based on 
physical reasoning, the essence of which can be briefly 
expressed as follows. The medium was examined, in 
which the characteristic scale a of variations of the 
sound velocity c and of the velocity of the medium v 
was much greater than the wavelength λ and the sizes 
of the  source or receiver d. In the vicinity of the 
source and receiver, moving with constant velocities w 
and u, the regions Ds and Dr were separated, whose 
dimensions were much greater than λ and d, but less 
than a. In these regions c and v were considered 
constant and equal to cs, vs, cr, and vr, respectively. 
The Doppler effect was studied only within the regions 
Ds and Dr on the basis of classical formula (1), using 
the rule of addition of velocities at transition from one 
inertial system of coordinates to the other. In the 
Doppler formulas, derived for the regions Ds and Dr, 
the directions of vectors ss and sr were not specified, 
because they were considered interrelated by the 
refraction laws. In case of simultaneous motion of the 
source and receiver, the formulas for the regions Ds and 
Dr were combined on the basis of the assumption that, 
when the wave propagated in the inhomogeneous 
moving medium, its frequency in the chosen 
(conventionally stationary) coordinate system L 
remained unchanged. As a result, formula (31) was 
derived. Later (see, for example, Ref. 13) the vectors ss 
and sr, entering formula (31), were replaced by the 
normals ns and nr coinciding with them. 

Formula (31) and analogous expression derived in 
Ref. 11, significantly differ. Because in Refs. 11 and 12 
different approaches to the solution of the problem 
were used, directly from these works it was not clear, 
how one of these formulas can be transformed into 
another. Therefore, in Ref. 14 formula (27) for the 
acoustic Doppler effect in the inhomogeneous moving 
medium was derived for the first time, based on the 
approach used in Refs. 9$11. If in the last formula we 
express the phase velocities of sound Ws and Wr in 
terms of c and v, it is easily transformed into Eq. (31). 
Formula (26) derived here was not published 
previously in the literature. 
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