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The noise immunity of optical systems for information transfer  is studied as a function of the 
distribution law of laser radiation intensity fluctuations in the turbulent atmosphere. 

 
The interest in atmospheric optical information 

transfer systems (AOITSs) has recently been revived.1,2 
In this connection, study of the noise influence on the 
reliability of such systems is of interest as well. 
AOITSs operate under conditions of additive 
(background) and multiplicative noise in the radiation 
propagation channel.3 The atmospheric turbulence, in 
particular, introduces a multiplicative noise, which 
causes some undesired effects, including fluctuations of 
signal intensity (signal fading). As a result, the 
probability of errors in the transmitted information 
increases, and noise immunity of the system drops.  The 
influence of the distribution laws of intensity 
fluctuations on the AOITS noise immunity has been 
studied in Ref. 4.  However, some incorrect 
assumptions were made in this paper as far as they 
concerned the distribution laws themselves and the 
domain of their applicability. Therefore, it is worth 
considering the AOITS noise immunity based on the 
contemporary data on the distribution laws. 

As a rule, AOITSs are digital systems using power 
reception of binary amplitude-modulated signals. In 
this method, unit elements of a signal differ by 
presence or absence (œpassive pauseB) of a radiation 
pulse. A receiver in this case counts the number of 
photons in a time interval corresponding to binary 
pulsing and compares the results with the receiver 
threshold. 

As known,5 the statistics of received photons for a 
multimode laser in the presence of some background is 
well described by the Poisson law. For the false alarm 
probability we have6: 

 !f.a = 1$ exp($nb) ∑
n=0

nthr

  
nb
n

n!
, (1) 

where nb is the number of background photons. 
The number of background photons nb is usually 

small. Thus, the threshold ensuring low probability of 
false alarm !f.a(≈ 10$4 $ 10$8), usually does not exceed 
several units. At the same time, the probability to skip 
signal photons depends on a number of factors, among 
them there are not only the threshold value, but also the 
distribution function of the signal intensity fluctuations: 

 Psk =∑
n=0

nthr

  p(n), (2) 

where p(n) is the probability of receiving n photons 
during the radiation pulse duration. 

Taking into account that the fading correlation 
time in AOITS, that is, the time during which the 
correlation coefficient decreases down to zero level, is 
far longer than the signal length, we obtain 

 p sk =∑
n=0

nthr

  ⌡⌠
0

∞

 p(n/n0) p(n0) dn0, (3) 

where p(n0) is the probability density of the number n0 
of photons per radiation pulse. 

To calculate the noise immunity of reception, one 
has to know the distribution law of the probability of 
laser radiation intensity fluctuations. It is found7 that 
the universal dimensionless parameter, which 
determines the form of the distribution law of the  
intensity fluctuations, is the variance of logarithm of 

the intensity of a plane wave  β0
2. It can be calculated 

in the approximation of the method of smooth 
perturbations (MSP): 

 β0
2 = 1.23 Cn

2 k7/6 L11/6, (4) 

where Cn
2 is the structure characteristics of the air 

refractive index, which determines the degree of 
turbulence; k = 2π/λ, λ is the wavelength; L is the 
path length. 

B y now it is proved, both theoretically and 
experimentally,7 that under conditions of the MSP 

applicability, when β0
2 << 1 (the region of weak 

fluctuations), intensity fluctuations of the received 
radiation obey the lognormal distribution law 

 P(I) = 
1

2π σ I
 exp ⎣

⎡
⎦
⎤$ 

1
2σ2 (lnI $ Λ)2  , (5) 

where σ2 = ln (σI
2 + 1) is the variance of the mean level 

of intensity; σI
2 = <(I $ <I>)2>/<I>2 is the relative 

intensity variance; Λ = ln <I>/(σI
2 + 1)1/2 is the mean 

value of the intensity level; < > denote averaging. 
Within the region of weak intensity fluctuations, 

the following relations between σI
2 and β0

2 are valid8,9: 
for a plane wave 

 σI
2 ≅ β0

2 ,  (6) 
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for a spherical wave 

 σI
2 ≅ 0.41 β0

2 , (7) 

for a collimated beam under typical conditions of 
AOITS  operation  (Ω >> 1, where Ω = k a2/L, a is the 
transmitting antenna radius) 

 σI
2 ≅ 0.84 β0

2 . (8) 

At a further increase of β0
2 along the path, strong 

intensity fluctuations arise, the above relations between 

σI
2
 and β0

2 break. Then fluctuations become saturated. It 
has been found experimentally10 that the maximum level 

for the plane wave σI
2 ≅ 1.34 $ 1.36 corresponds to  β0

2

 ≅ 4. It is shown in Ref. 11 that for a spherical wave 

the value of the maximum level of σI
2 is higher than for 

a plane wave. The growth of β0
2 above this level results 

in a smooth decrease of σI
2 in the region  of highly 

saturated fluctuations. 
The lognormal law has earlier been proposed8 as 

the distribution law for the region of highly saturated 
fluctuations as well. However, recently it has been 

convincingly demonstrated10 that for the values of β0
2 

from 36 to 324, the experimental data are well 
approximated by a K-distribution of the following form: 

<I> P(I) = 
2

c (3)
 y(y+1)/2 I(y$1)/2 Ky$1(2 I y) , (9) 

where y = 2/(σI
2 $1); y > 0; K

ν
(z) is the McDonald 

function (ν is the order; z is the argument of the 

function). B esides, at σI
2 → 1 and y → ∞ the 

distribution transforms into the exponential one: 

 P(I) = 
1

<I>
 exp ⎝

⎛
⎠
⎞$ 

I

<I>
 . (10) 

In the region of β0
2 >> 1 the following relations 

between σI
2 and β0

2 have been  established: 
for a plane wave 

 σI
2 ≅ 1 + 0.86 ( )β0

2 $2/5 , (11) 

for a spherical wave 

 σI
2 ≅ 1 + 2.8 ( )β0

2 $2/5 , (12) 

for a collimated beam, depending on the relation 

between Ω and β0
2, the expressions will be identical to 

those for a plane or a spherical wave. 
Upon substituting Eqs. (5), (9), and (10) into 

Eq. (3) and assuming I = n0, <I> = nav, where nav is 
the average number of photons per  radiation pulse, we 
have for the lognormal and K-distribution, respectively  

 Psk
ln = ∑

n=0

nthr

  ⌡⌠
0

∞

  
n 0
n=1

2π n!  ln ( )σI
2 + 1

 × 

× exp 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

$ n0 $ 

ln 
n0

nav 
+ [ ]ln(σI

2 + 1) 1/2

2

 

ln(σI
2 + 1)  dn0 , (13)

 

 Psk
K  = ∑

n=0

nthr

  ⌡⌠ 
n0
n exp($n0)

n! nav
 

2
c (3)

 × 

 × y(y+1)/2 (n0)
(y$1)/2 Ky$1(2 n0 y) dn0 . (14) 

For the exponential distribution, upon some 
transformations,11 we have 

 Psk
ex = ∑

n=0

nthr

  
nav
n

(nav + 1)n+1 . (15) 

Following Ref. 4, the AOITS noise immunity was 
estimated using a power parameter $ the average number 
of photons per radiation pulse that provides a given 
probability of the error. Therefore, the value of nthr has 
been first determined by Eq. (1) with the Tables of the 
Poisson functions12 assuming certain preset value of the 
false alarm probability. For the sake of convenience, 
the latter was set equal to the probability to skip a 
signal, which varied from 10$2 to 10$6. The number of 
background photons varied from 1 to 10. Then for all 
distributions, within their applicability domains, we 
calculated the value of nav, which ensures the required 

probability of signal skipping at different values of σI
2 

assuming the value β0
2 to be set. 

Some calculated results are shown in Fig. 1. 
 

 
 

 

Fig. 1. Dependence of nav on σI

2
: lognormal distribution (solid 

curves), K-distribution (dashed curves); exponential 
distribution (circles); nb = 1, ..., psk = 10$4, ..., nthr = 6 (curve 
1); nb = 1, ..., psk = 10$6, ..., nthr = 9 (curve 2); nb = 10, ..., 
psk = 10$4, ..., nthr = 24 (curve 3); nb = 10, ..., psk = 10$6, ..., 
nthr = 28 (curve 4). 
 

From analysis of the data obtained we can 
conclude the following: 

1. With increasing background illumination, as we 
might expect, the average number of photons in the 
pulse needed to provide the required value of p sk 
increases. 
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2. In the presence of signal fading obeying the  

K-distribution along the path with β0
2 >> 1, the number 

of photons per radiation pulse necessary for reliable 
AOITS operation is larger than in the presence of 
lognormal fading, the values of nb and p sk being the 
same. 

3. The effect of saturation is well pronounced for  
K-distribution, what is clearly seen in Fig. 2, while the 
lognormal distribution does not give this effect. 

 
 

 
 

Fig. 2. The dependence of nav on σI

2
 for K-distribution of 

optical wave intensity fluctuations: psk = 10$3 (curve 1); 
psk = 10$4 (curve 2); psk = 10$6 (curve 3). 

 

 

 

4. The poorest conditions for signal reception 
occur, when signal fading along the path are 
distributed by the exponential law. 
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