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The equation for lidar return power is considered, in a small-angle approximation, with the 
allowance for the dependence of multiple scattering contribution on the disperse medium composition.  
The ratio between the multiply and singly scattered components of radiation is numerically studied for 
different optical thickness of a layer depending on the receiver field of view.  The applicability of the 
diffraction approximation for the small-angle part of scattering phase function is estimated when 
describing lidar returns with the allowance for multiple scattering. 

 

During the last decades lidars have been playing 
an increasingly important role in atmospheric optics 
studies.  At present a comprehensive theory is 
developed and efficient methods are constructed for 
lidar return interpretation in the single scattering 
approximation.1$3  When sounding optically dense 
media, the part of multiply scattered light in lidar 
return increases greatly and gradually becomes to be 
dominant. The multiple scattering plays a decisive role 
in light propagation through large-size media, in which 
the phase function is strongly forward peaked. 

The available algorithms for interpreting the data 
of laser sensing of dense media are based, as a rule, on 
separating the lidar return component due to single 
scattering and on solving this equation for this 
component using known methods.4$5  In this case the 
contribution coming from multiple scattering is 
considered as noise, which is taken into account by the 
iteration procedure. 

The level of noise due to multiple scattering in 
lidar returns depends on the optical characteristics of 
the medium and the experiment geometry.  For its 
rigorous consideration the solution of the radiative 
transfer equation (RTE) is required that is connected 
with bulky calculations and makes the operative 
interpretation of the experimental data difficult. 

One of the promising approach, which allows one 
to overcome these difficulties, is the use of analytical 
solutions of the radiative transfer equation obtained in 
the small-angle approximation.6,7  In Refs. 8$10 the 
authors proposed and developed some methods for 
treatment of the multiple scattering in the small-angle 
approximation to description of lidar returns with the 
subsequent calculation of the scattering in the large-
angle approximation.  However, the application of the 
results obtained in Refs. 8$10, when solving the inverse 
problems of lidar sensing, is too difficult because the 
used model descriptions of the scattering phase 
functions are of extremely simplified form and do not 
represent real information on the disperse composition 
of the medium. 

This drawback can be overcome using the 
connection between the scattering phase function of 
large-size particles in the Fraunhofer diffraction 

approximation and the geometric parameters of these 
particles shadow.11 Such an approach makes it possible 
to express analytically the dependence of multiple 
scattering contribution to lidar returns on the parameters 
of medium microstructure.12  In its turn, introduction 
of this dependence into the description of lidar return 
signals enables one to consider multiple scattering 
background not as noise but as an extra source of 
information about the characteristics of the medium 
sounded, which can be considered when developing the 
algorithms for lidar data interpretation. Finally, the 
above approach enables one to predict the behavior of 
lidar returns given the scattering phase functions 
corresponding to typical aerosol size-distributions that is 
necessary in experiments on sounding dense media and 

in development of the corresponding  experimental 
techniques. 

This paper describes the structure of lidar returns 
depending on the experimental geometry based on the 
generalization of lidar equation with the allowance 
made for multiple scattering in the small-angle 
approximation. The calculated behavior of the multiple 
scattering background in response to variations of the 
receiver’s field-of-view angle is presented in regard to 
the disperse composition of scattering media. 

 

1. Formulation of the lidar equation 
with regard to multiple scattering 
in the small-angle approximation 

 

This section describes analytical approaches to 
description of the interconnection between the lidar 
return power, at the receiver input, and optical 
characteristics of a disperse medium with the account of 
contribution from multiple scattering in the small-angle 
approximation. 

Now we shall consider the scattering medium with 
a forward peaked phase function and the optical 
characteristics depending only on the single spatial 
coordinate z.  Let us assume that the medium is 
irradiated with a pulsed radiation from the lidar; the 
source and the receiver of laser radiation are placed in 
the plane z = 0, their optical axes are parallel to the axis 
Oz, the distance between the axes equals d, and the 
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sensitivity of the receiving system is described by the 
function D(r, γ) having circular symmetry over the 
spatial and angular coordinates, where r(x, y) are the 
transverse coordinates in the plane z = 0 and γ is the 
angle formed by a given direction with the axis Oz. 

We proceed from quite a commonly used model.  
According to this model, the multiply scattered radiation 
is taken into account in the vicinity of the direction of 
propagation of a sounding pulse, and the large scattering 
angle is considered in the single-scattering approximation.  
In this case the process of pulse propagation can be 
subdivided into three stages including the radiation 
propagation from a source to a scattering volume, where 
single scattering of the pulse occurs in the backward 
direction, as well as the scattered radiation propagation 
from this volume to the receiver.  In this case the process 
of light pulse propagation in both directions is described 
by the nonstationary radiative transfer equation in the 

small-angle approximation. The formal description of a 
lidar return can be obtained with the procedure8,9 of a 
successive consideration of large angle scattering. A 
simple solution is obtained in the case when the variation 

of the scattering phase function in the angle region close to 
π can be neglected. This region is determined by the 
transverse size of an instantaneous scattering volume. 
Using the above assumptions in the case of a point 
monodirectional (PM) source emitting a δ-pulse with unit 
energy at the time moment t = 0, the following 
expression can be obtained for the lidar return power 
arrived at the moment of time t = 2z/c to the receiving 
system: 

P(z, Rr, γr , d) = 
“

4π βπ(z) ⌡⌠
0

∞

 νJ0(νd) D 
∼
(ν, zν) F(ν) dν ,(1) 

where 

F(ν) = exp [$2 τ(z) + g(ν)] ,   τ(z) = ⌡⌠
0

z

 ε(s) ds ;  (2) 

 g(ν) = 2⌡⌠
0

z

 σ(z $ s) x ∼(νs) ds ;  (3) 

–0 is the first-kind Bessel function; D 
∼
(ν, p) is the 

Hankel transform of the function D(r, γ) over the 
variables r and γ; F(ν) is the optical transfer function 
(OTF) for a stationary source in a virtual medium where 
light scattering and extinction coefficients are twice as 
large as their real values ε(s) and σ(s), and the small-
angle scattering phase function χ(γ) does not vary. 

Along with the backscattering coefficient β
π
(z) the 

optical transfer function F(ν) in Eq. (1) also bears  
information on the optical properties of a medium and 
also depends on the Hankel transform of the small-angle 

scattering phase function x ∼(p). The small-angle 
scattering phase function x(γ) satisfies the condition of 

normalization 2π ⌡⌠
0

∞

 x(γ) γ dγ = 1.  It is similar to the real  

 

scattering phase function in the range of small 
scattering  angles γ and tends to zero at large γ angles.  
When replacing the scattering phase function by its 
small-angle counterpart, the value of the scattering 
coefficient σ(s) is substituted by an "efficient" value.  
This makes it possible to consider approximately the 
loss of radiation scattered at large angles. 

The form of the function D 
∼
(ν, p) is determined by 

the spatial and angular characteristics of the receiving 
system. Subsequent analysis will be made for the case 
when the function D(r, γ) is of a step-wise form in 
both variables, i.e., we assume that 

 D(r, γ) = U(Rr $ r) U(γr $ γ) ,  (4) 

where U(r) is the unit step function (the Heaviside 
unit function), Rr and γr are the radius of entrance 
pupil and the half-angle of the receiver’s field of view.  
The Hankel transform of the function D(r, γ) (4) 
yields the following expression 

 D 
∼
(ν, p) = U 

∼
(ν, Rr) U 

∼
(p, γr) ,  (5) 

where 

 U 
∼
(ν, Rr) = Sr 

2 J1 (Rr ν)

Rr ν
 , 

 U 
∼
(p, γr) = Ωr 

2 J1 (γr p)

γr p
 ;  (6) 

–1(.) is the Bessel function of the first kind; Sr = πR
2
r 

is the receiving aperture area; Ωr = π γ2
r is the solid 

receiving angle. 
Taking into account Eqs. (4)$(6), it can be 

readily seen that Eq. (1) can also be presented in the 
form12: 

P(z, Rr, γr, d) = 
c

2 βπ(z) Sr Ωr E(z, Rr, γr, d) ,  (7) 

where the function E(z, Rr, γr, d) describes the 
irradiance distribution in a virtual medium formed at a 
distance z = ct/2 when irradiated with a stationary 
directional source of a unit power with the exit 
aperture of the  radius Rr and the angular beam 
divergence γr. 

Equation (1) determines the lidar return power P 
depending  on the above mentioned optical properties of 
the scattering medium: ε(s), σ(s), βπ(z), x(γ) and the 

parameters of the lidar receiving system: d, Rr, and γr.  
This equation generalizes the lidar equation with the 
account of multiple scattering in the small-angle 
approximation of the radiative transfer theory.  The 
known approximations of low multiplicities of 
scattering: single and double scattering ones follow 
from Eq. (1).  Based on formula (1), we can estimate 
the noise due to multiple scattering in lidar returns 
when interpreting sounding data in the framework of 
the single-scattering approximation.  Since lidar returns 
in the small-angle approximation bear information 
about the optical transfer function of a medium F(ν) 
(2), the possibility exists of determining the OTF (and 
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RFF) of the medium with the use of laser sounding 
methods.13 In its turn, for solving inverse problems of 
laser sounding on reconstruction of optical 
characteristics of dense media, the methods based on the 
interpretation of the relation F(ν) (Ref. 14 and 15) 
retrieved from lidar experiments can be used. 

Since the behavior of OTF F(ν) is largely 
determined by the scattering phase function x(γ), for 
solving the corresponding inverse problems the use of a 

priori model representations of its structure is of a 
considerable importance.  Now we briefly consider the 
choice of a model for the small-angle scattering phase 
function in Eq. (1). 

 

2. Model of the small-angle 
scattering phase function 

 

At light scattering by large particles, for which  
kr⏐m $ 1⏐ >> 1, where r and m denote the size and the 
refractive index of the particle; k = 2π/λ, λ is the light 
wavelength, a satisfactory description of the scattering 
phase function in the range of small angles gives the 
Fraunhofer diffraction approximation on a plane opaque 
screen that coincides with the particle contour. In the 
case of spherical particles, this approximation results in 
the known Airy formula16 for the scattering phase 
function x(γ) = x(d)(γ).  At the same time, for the 
extinction coefficient ε and the scattering coefficient 
σ = σ(d) the relationships are fulfilled: ε = 2S, 

σ(d) = S, where S = ⌡⌠
0

R

 s(r) dr is the total geometric 

cross section of particles in a unit scattering volume; 
s(r) is the size distribution function of particle 
geometric cross sections.  For a polydisperse ensemble 
of particles describing the cloud of the Cloud C$1 
model from Refs. 17, the applicability of the diffraction 
approximation to the scattering angles within the limits 
γ < 8° (at λ = 0.7 μm) is shown in Ref. 18. 

The Hankel transform of the scattering phase 
function x(d)(γ) determines the correlation function of 
particle shadows ϕ(ρ) (Ref. 11).  It is connected with 
the normalized function of the particle geometric cross 
section size-distribution f(r) = s(r)/S by the 
expression 

 ϕ(ρ) = ⌡⌠
ρ/2

R

 G(ρ/2r) f(r) dr ,   ⌡⌠
0

R

 f(r) dr ,  (8) 

where R is the maximum size of scatterers.  The 
function G(ρ/2r) has an obvious geometric meaning: 
its value equals the ratio between the area of the 
intersection of two circles of radius r with the distance 
ρ between the centers of circles to the area of one of 
the circles. 

The allowance for light reflected by particles and 
transmitted through particles results in a detailed 
description of the scattering phase function for large 
particles.  This question is discussed in detail in 
Refs. 19 and 20, where the expressions are obtained in 

the framework of geometric optics for the phase 
function of light reflected x(r)(γ) and transmitted 
x(t)(γ) through a particle taking into account reflection 
inside a particle. This enables the following expansion 
for the total scattering phase function 

 x(γ) = 
σ(d)

σ  x(d)(γ) + 
σ(r)

σ  x(r)(γ) + 
σ(t)

σ  x(t)(γ)  (9) 

and the scattering coefficient 

 σ = σ(d) + σ(r) + σ(t) .  (10) 

For the functions x(r)(γ) and x(t)(γ) the simple 
approximation formulas may be found in the literature: 

 x(r)(γ) = x(r)(0) e$αγ ,   x(t)(γ) = x(t)(0) e$βγ2 , (11) 

in which the parameters α and β depend on the 
refractive index of the particulate matter.  As shown in 
literature,21 the use of the approximation of the form 
(9) for x(γ) with the allowance made for the 
approximations (11) enables one to describe the phase 
function for the cloud C1 model (Ref. 17) with the 
error no less than 15% within the scattering angle range 
γ < 350 (at λ = 0.7 μm). 

The values of the components of scattering 
coefficient σ(r) and σ(t) due to light reflected and 
refracted by particles are determined by the parameters 
of approximation models (11) and are proportional to 
the geometrical cross section of particles S.  This makes 
it possible to express the scattering coefficient σ = Λε 
in terms of the extinction coefficient ε and the 
œeffectiveB albedo of single scattering Λ, which, in 
turn, is also the function of the parameters α and β and 
may vary from 0.5 (the model of opaque screens) to 
0.94 (m = 1.33 $ i⋅0). 

In the case of nonabsorbing particles, the phase 
function in the approximation of geometric optics does 
not depend on the medium disperse composition, and 
the data on the medium microstructure are contained in 

solely the diffraction component of the scattering phase 
function x(d)(γ).  The absorption, if present, results in 
the energy loss of light in passing through a particle. 
The magnitude of loss depends on the trajectory of a 
light beam inside a particle and, finally, on its size. 
This gives rise to the change of the form of the phase 
function component x(t)(γ) and, in particular, to a 
decrease of its asymmetry factor. 

 

3. Analysis of the lidar equation structure 
 

To analyze Eq. (1), we can conveniently subdivide 
the OTF F(ν) written by Eq. (2) into the incident 
attenuated component F0 = e$2τ(z) and the scattered 
component Fsc(ν) = F(ν) $ F0.  In this case and with 
the allowance made for Eq. (7), Eq. (1) can be 
modified as follows 

P(z, Rr, γr, d) = 
c

2 βπ(z) Sr Ωr [E0(z, d) + Esc(z, d)] . 

(12) 
If in Eq. (12) the component Esc(z, d) is neglected, 

we obtain the lidar equation of a conventional type in the 
single scattering approximation 
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 P1(z, Rr, γr, d) = 
c

2 βπ(z) Sr Ωr E0(z, d) ,  (13) 

where 

E0(z, d) = Ae$2τ(z) ⌡⌠
0

∞

 ν$1 J0(νd) J1(νRr) J1(νzγr) dν , 

(14) 
 A = 2/(π Rr z γr) . 

The integral term in Eq. (14) describes the 
influence of the geometric factor entering into the lidar 
equation in the single scattering approximation. 

Formula (12) can be also presented in the form 

 P(z) = P1(z) [1 + m(z)] ,  (15) 

where the function m(z) is the ratio between the 
multiply and singly scattered components of a lidar 
return 

 m(z) = 
P(z) $ P1(z)

P1(z)
 = 

Esc(z, d)

E0(z, d)
 .  (16) 

Before analyzing the general equation (1), we 
consider briefly the structure of the lidar return in the 
single scattering approximation (13). 

 

3.1. Single scattering approximation 
 

In this approximation the lidar return P1(z) (13) 
is determined by only two optical characteristics of a 
scattering medium: the extinction coefficient ε(z) and 
the backscattering coefficient βπ(z).  It is worth noting 

here some peculiarities of the effect of the geometric 
factor in Eq. (13), following from the characteristics of 
the integral of the Bessel functions product in 
Eq. (14).  This integral, as shown in Refs. 22 and 23, 
is expressed in terms of elementary functions.  
According to Ref. 23, the lidar return P1(z) (13) can 
be presented as 

 P1(z) = (c/2) βπ(z) e$2τ(z) z$2 G(Rr, zγr, d) , (17) 

where the function G(Rr, zγr, d) is a two-dimensional 
contraction of circles with the radii Rr and zγr.  The 
distance between the centers of circles equals d. 

Depending on the relationship between the 
parameters d, Rr, and γr, the sounding path can be 
divided into the characteristic regions or zones, namely, 
the near, intermediate, and far zone; within the limits 
of these zones the calculations connected with the 
account of geometry of a lidar experiment may be 
simplified. 

In the far zone being of principal practical interest 
at 
 zγr > Rr + d, (18) 

the geometrical factor is constant and equal to the area 
of the receiving aperture G = Sr, hence the power of  
a received signal is determined by the formula 

 P1(z) = (c/2) z$2 Ωr βπ(z) e$2τ(z)
 .  (19) 

This equation is well understood, and there are 
many publications on the methods of its inversion (see, 
for example, the review in Ref. 1). 

In the near zone determined from the condition 

 zγr < | Rr $ d |,  (20) 

at d > Rr we obtain G = 0 and, hence, P1(z) = 0.  At 
d < Rr the geometrical factor in the near zone increases 
according to the square law G = π(zγr)2.  This results 
in the exclusion of the factor z$2 in the equation for the 
lidar return power: 

 P1(z) = (c/2) Ωr βπ(z) e$2τ(z)
 .  (21) 

In the intermediate zone 

 | Rr $ d | < zγr < Rr + d, (22) 

the geometrical factor G is a monotonically increasing 
function z, which varies from π(Rr $ d)2 to πR2

r.   
In the integrated scheme of sounding at d = 0 the 
intermediate zone length reduces to zero. 

 

3.2. Correction for multiple scattering 
 

With the allowance made for the form of the 
function E0(z, d) (14) in the far zone (18), the ratio 
between the multiply and singly scattered components 
of a lidar return m(z) (16) can be written in the 
following form12: 

 m(z) = 

2zγr 

Rr
 ⌡⌠
0

∞

 ν$1
 J0(νd)J1(νRr)J1(νzγr) [eg(ν) $ 1] dν.(23) 

In particular, for a monostatic coaxial scheme of 
the lidar transmitter and receiver (d = 0) it follows from 
Eq. (23), at Rr → 0,  that 

 m(z) = zγr ⌡⌠
0

∞

 J1(νzγr) [eg(ν) $ 1] dν .  (24) 

The expression in the right-hand side of Eq. (24) 
is absolutely identical to the formula determining the 
relationship of fluxes of scattered and direct radiation 
penetrating through a circular area of the radius (zγr) 
in the case of a TM-source.12 

In the near zone (20) the formula for m(z) takes 
the form analogous to Eq. (23), if the parameters Rr 
and (zγr) in the factor before the integral change their 
places.  At d = 0 and γr → 0 in the near zone we have 

 m(z) = zγr ⌡⌠
0

∞

 J1(νRr) [eg(ν) $ 1] dν .  (25) 

 

4. Results of numerical simulation 
 

As an example, Fig. 1 shows a typical parametric 
series of characteristics m(γr) calculated at different 
optical thickness τ of a homogeneous 1-km layer; the 
distance H to the near boundary of the layer is 1 km. For 
the above-listed data the scattering phase function is 
chosen in the Fraunhofer diffraction approximation 
x(γ) = x(d)(γ) (Λ = 0.5) at λ = 0.55 μm for a polydisperse 
ensemble of particles of the C1 Cloud type with the 
effective particle size Reff. A modal radius of 10 μm is 
considered as Reff. 
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The characteristic m(γr) increases monotonically as a 
function of the angle γr and tends to the limit 
m∞ = exp(2Λτ) $ 1 at γr → ∞, whence it follows that 

even at the optical thickness τ = 1 the contribution of 
multiply scattered radiation to the lidar return may 
dominate at a sufficiently large angle of the receiver’s 
field of view γr. With the increasing τ the ratio between 
the multiply and singly scattered components of a lidar 
return may reach the value of several tens. Under such 
conditions the value of single scattering signal may occur 
at the level of (and less than) the measurement errors in 
a total lidar return. This produces a negative effect on the 
accuracy of experimental data interpretation based on 
single scattering analysis of lidar signals and imposes a 
limitation on the choice of admissible values of the angle 
γr. For the characteristics depicted in Fig. 1, the 
threshold value of the angle γr, within which the function 
m(γr) ≤ m1, is presented in Fig. 2 as a function of optical 
thickness τ at m1 = 10 (curve 1). This curve has the 
vertical asymptote τ = ln 11 ≅ 2.4. The similar dependence 
of γr(τ) for m1 = 5 and 2 is presented in Fig. 2 by curves 
2 and 3, respectively. 
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Fig. 1. Variability of the function m(γr) at a depth of 1 km 
inside a 1-km far homogeneous layer at variations of the 
optical thickness τ = 1, 2,..., 5 (curves 1$5). 
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Fig. 2. Isoline chart of the function m(τ, γr) = 10(1), 5(2), 
2(3) based on the data from Fig. 1. 
 

 
 

The dependences given in Figs. 1 and 2 are 
obtained for the small-angle scattering phase function 
x(γ) = x(d)(γ) in the diffraction approximation, which 
describes satisfactorily the lidar return structure at 
relatively small angular apertures.  The geometric-
optics component in the scattering phase function plays 
important part at the periphery of a beam, what is 
illustrated in Figs. 3 and 4. Figure 3 shows as an example 
the dependence of m(γr) at two values τ = 2 and 3 

calculated without (curves 1, 2) and with (curves 1′, 
2′) the account of the above component (m(γr) = 
= m(d)(γr)) enabling one to assess the angular range γr, 
within which the small-angle scattering phase function 
in the diffraction approximation applies to lidar 
returns.  Figure 4 shows the dependence on the optical 
thickness τ for the angles γr, where the discrepancy 
between the functions m(d)(γr) and m(γr) does not 
exceed 5, 10, and 15% (curves 1$3, respectively). 
 

 

5 10 15 γr, mrad

5

10

15

20
m(γr)

2

1

2
 ′

1 ′

0  
 

Fig. 3. A comparison between the behavior of the function m(γr) 
calculated without (curves 1, 2) and with (curves 1′, 2′)  the 
account of geometric optics component of the scattering phase 
function for two values of the optical thickness τ = 2 (1, 1′),  
3 (2, 2′) at the layer position similar to the data in Fig. 1. 
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Fig. 4. The range of values of optical thicknesses τ and the 

receiver field-of-view angles γr, within which the difference 

between the functions m(γr) and m(d)(γr) does not exceed 5, 
10, and 15% (curves 1$3, respectively). 
 

 

The influence of the layer inhomogeneity on the 
behavior of function m(γr) is shown in Figs. 5 and 6. 
Figure 5 gives the dependence of m(γr) for the model of 
a linearly increasing extinction coefficient profile 

ε(z) = h(z $ z0) ,  z > z0 ,  z = 3 km, z0 = 1 km,  (26) 
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Fig. 5. Variability of the function m(γr) at a depth of 2 km at 
variations of the rate of linear increase of the extinction 
coefficient inside the layer; curves 1$5 correspond to the 
optical thickness τ = 1, 2,..., 5. 
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Fig. 6. Transformation of the function m(γr) as the beam 
penetrates deep into the layer with linearly increasing profile 
of the extinction coefficient; the value τ = 1 corresponds to 
curve 1 (z = 2 km). 

in the case when the layer limits are fixed and the rate 
of increase of the extinction coefficient determined by 
the coefficient h varies. 

Figure 6 shows the transformation of the angular 
structure of the function m(γr) for linear model of the 
profile of the extinction coefficient ε(z) (26) at h = 2 
as the beam penetrates into the layer.  As seen from 
comparison of Figs. 5 and 6 with Fig. 1, the behavior 
of the functions m(γr) undergoes slight qualitative 
changes  at variations of the model  of the extinction 
coefficient profile ε(z).  The results referring to 
analysis of applicability limits of the diffraction 
approximation of the scattering phase function and 
selection of the receiver’s field-of-view angle γr to 

provide for a permissible level of multiple scattering 
background also appear very close in behavior. 

The further generalization of numerical results is 
possible based on the properties of similarity that may  
be obtained for Eq. (1).  Taking into account the 
constant characteristics of m(γr) for a fixed value of the 
dimensionless parameter 

 p = 
R
e z

λ H
 γr , (27) 

all the above-mentioned data are simply generalized for 
a wide range of models corresponding to the different 
distance z, the geometric thickness of the layer H and 
having similar distribution functions f(η) in relative 
size of particles η = r/R

e
.  Thus, for example, if the 

scattering layer is located at a distance z′, all other 
parameters being invariable, the function m(γr) is 
transformed according to the rule 

 m(z′, γr) = m (z, γr z′/z) ,  (28) 

i.e. displacement of the layer does not change the 
angular structure of the lidar return accurate to the 
scale transformation over the variable γr, being 
inversely related to the variation of the distance z.   
It follows herefrom that as the distance from a lidar to 
the scattering layer increases, the multiple scattering 
background from the same depth of the layer grows 
following the law determined by Eq. (28). 

 

5. Conclusion 
 

Thus, this paper considers the equation describing 
the behavior of the lidar return power depending on the 
microstructure of a coarse disperse medium and 
geometric parameters of the experimental scheme with 
the account of multiple scattering in the small-angle 
approximation.  The radius of the receiving aperture, 
the angle of the receiver field of view, as well as the 
distance between the optical axes of the source and the 
receiver are considered as geometric parameters. The 
influence of the disperse composition of the medium 
manifests itself as the correlation function of a particle 
shadow, which represents the Hankel transform from a 
diffraction component of the small-angle phase function. 

The paper presents some results of calculations of 
the relationship between the components of multiply 
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and singly scattered radiation in the lidar return for the 
models of a homogeneous layer and a layer with a 
linearly increasing profile of the extinction coefficient.  

The permissible angles of the receiver’s field of 
view are estimated. Within these angles the contribution 
of multiply scattered radiation exceeds the contribution 
of singly scattered radiation by the factor no more than 

2, 5, and 10 for layers of variable optical thickness.  For 
the case of lidar returns calculated with the account of 
multiple scattering, the applicability of the diffraction 
approximation to description of the small-angle part of 
the scattering phase function has been studied 
numerically. 

Using the similarity relationships, the results of 
numerical calculations are extended to a wide range of 
models with various modal radii of particles, different 
distance to the near layer boundary, and different 
penetration depth into a layer. 
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