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A non-hydrostatic model is proposed that takes into account water and air compressibility. The 

numerical algorithm for solution of the problem is based on the method of splitting into the physical 
processes and geometrical variables. The model can be used in studying and forecasting meso- and 
microclimate conditions with the account of anthropogenic effects. 

 
 

The equations of geophysical hydrodynamics, 
which express the main principles of conservation of 
energy, momentum, and mass of a stratified continuum, 
are accepted in this paper as the basis for mathematical 
simulation of meso- and microclimate. 

A non-hydrostatic model taking into account 
compressibility of water and air is proposed. The 
model is most universal from the viewpoint of 
describing the processes with characteristic horizontal 
scales less than 100 km. The general principle is a 
unified theoretical approach to studying the 
atmosphere and hydrosphere. 

The system of differential equations of the 
nonstationary 3D non-linear model includes: 

the equation of motion 

 
dv
dt

 = $ 
1
ρ
 grad p $ 2ω × v + g + Dv, (1) 

the equation of continuity 

 
dρ

dt
 + ρ diw = 0, (2) 

the equation of heat influx 

 
dT

dt
 $ 

αT

cpρ
 
dp

dt
 = DT + MT, (3) 

the equation of humidity (salinity) transfer 

 
dq

dt
 = Dq + Mq, (4) 

the general form of the equation of state 

 ρ = ρ(p, T, q), (5) 

where 

 
d
dt

 = 
∂

∂t
 + u 

∂

∂x
 + v 

∂

∂y
 + w 

∂

∂z
 ; 

 Dψ = 
∂

∂x
 kxψ 

∂ψ

∂x
 + 

∂

∂y
 kyψ 

∂ψ

∂y
 + 

∂

∂z
 kzψ 

∂ψ

∂z
 . 

Here ψ is any of the functions of the considered 
problem; t is time; u and v are the horizontal components 
of the medium velocity vector v, and w is its vertical 
component along the axes of the Cartesian coordinate 
system (x, y, z); x and y are the horizontal coordinates 

and the axis z is directed upwards; ρ is the medium 
density; p is the pressure; T is the temperature; ω is the 
vector of angular velocity of the Earth’s rotation 
(directed parallel to the Earth’s axis toward the North 
Pole); kxψ, kyψ, and kzψ are the coefficients of turbulent 
exchange along the horizontal and vertical directions 
(assumed to be known functions of coordinates and 
time); g is the force of gravity; cp is the specific heat at 

a constant pressure; α = $ ρ$1 ∂ρ/∂T is the coefficient of 
thermal expansion; q is the mass mixing ratio of water 
vapor in the air (or salinity for water); MT is the rate of 
the heat variation due to radiative heat exchange and 
phase transitions (liberated latent heat); Mq is the 
power of the substance’s sources or sinks. 

Equation (5) can be written for air in the 
following form: 

 p = RρT, (6) 

where R is the universal gas constant of dry air. For 
water, the empirical equation of state connecting 
density, pressure, and salinity is used. 

The heat transfer in soil is described by the 
equation of heat transfer taking into account the fact 
that the soil consists of several layers with different 
thermal properties: 

 
∂T*
∂t

 = 
λ

cρ*
 

∂

∂z
 λ 

∂T*
∂z

 , (7) 

where T*, ρ*, λ, and c* are the temperature, density, 
heat transfer coefficient, and specific heat of the soil, 
respectively. 

Transforming Eqs. (2)$(3) by use of the equation 
of state, we obtain the evolution equations for T and p. 
To describe mesoscale processes in the atmosphere, 
these equations take the form 

 
dT

dt
 = (1 $ κ) T div v + κDT + κMT, (8) 

∂p

∂t
 + div (pv) = (1 $ κ) p div v + RκρDT + RκρMT, (9) 

where κ = cp/cv, cv is the specific heat at a constant 
volume. For water, these equations are more 
complicated. Below, the system of equations (1), (4), 
and (6)$(9) is considered. 
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The boundary conditions along the horizontal 
direction are set as fluxes of momentum, heat, 
humidity, and mass. At the upper and lower 
boundaries, conditions of the first kind are set. 

Since necessary information about 
hydrometeorological fields is absent, the initial 
conditions are replaced by the background (large-scale) 
values or obtained by solving the corresponding 
stationary problems. 

Following the proposed method and using 
equation of continuity (2), equations (1), (4), (8), and 
(9) are transformed to the symmetric form: 

 
∂U

∂t
 + BU = $ 

1
C
 
∂p

∂x
 + 2(ωzV $ ωyW) + DU; (10) 

 
∂V

∂t
 + BV = $ 

1
C
 
∂p

∂y
 + 2(ωxW $ ωzU) + DV; (11) 

∂W

∂t
 + BW = $ 

1
C
 
∂p

∂z
 $ Cg + 2(ωyU $ ωxV) + DW; (12) 

 
∂T

∂t
 + BT = (1.5 $ κ) T div v + κDT + κMT; (13) 

 
∂p

∂t
 + Bp = (0.5 $ κ) p div v + RκρDT + RκρMT; (14) 

 
∂q

∂t
 + Bq = 0.5 q div v + Dq + Mq, (15) 

where 

 Bψ = 
1
2
 [v grad ψ + div (ψv)]; 

 C = ρ;  U = Cu;  V = Cv;  W = Cv. 

The equations of the model are integrated in the 
Cartesian coordinate system by the method of fictitious 
domains. Introduction of such domains permits one to 
perform calculations with an arbitrary function 
describing the terrain and basins’ bottoms. 

The difficulty of solving the system of equations is 
caused by the presence of physical processes with 
different characteristic temporal scales. So, the 
numerical algorithm for problem (6) and (10)$(15) is 
constructed using the method of splitting according to 
the physical processes.1 

The problem is solved in three stages at each time 
step: 1) transfer of substances along some trajectories 
and turbulent exchange; 2) the process of matching 
hydrometeorological fields ; 3) calculation of radiation 
and phase heat influxes. This approach permits one, in 
principle, to use different time steps at every stage. 

At the first stage, the evolution equation of the 
following form is considered for each of the sought 
functions: 

 
∂ψ

∂t
 + Lψ = 0, 

where L = ∑
m=1

3

 Lm. 

Complicated problems can be reduced to simpler 
ones in the cases when the initial positively semi-
definite operator can be represented as a sum of 
positively semi-definite simplest operators. 

The time approximation is constructed using the 
method of component-by-component splitting of the  

geometrical variables1: the grid operator L
h ≥ 0 is 

decomposed into simpler operators Lh
m ≥0. The operators 

L
h
m ≥0 are approximated to the second order of accuracy 

in coordinates. 
Let us take a non-uniform grid with the main node 

points xi = iΔx (i = 0, 1,..., I+1); yj = jΔy 
(j = 0, 1,..., J+1); zk = kΔzk (k = 0, 1,..., K+1); 
tn = nΔt (n = 0, 1, ...) and steps Δx, Δy, Δzk, Δt. 

We also use auxiliary points xi+1/2, yj+1/2, zk+1/2 
in the middles of the main intervals. Let us denote: 

 ψ
n
i,j,k = ψ(xi, yj, zk, tn);  Δk = (Δzk+1 + Δzk)/2;  

 ui+1/2,j,k = (ui+1,j,k + ui,j,k)/2; 

 vi,j+1/2,k = (vi,j+1,k + vi,j,k)/2;  

 wi,j,k+1/2 = (wi,j,k+1 + wi,j,k)/2  (k = 1, 2, ..., K). 

The finite-difference analogs of the operators are 
as follows: 

 (Lh
1 ψ)i,j,k = 

ui+1/2,j,k ψi+1,j,k $ ui$1/2,j,k ψi$1,j,k

2Δx
 $ 

 $ 
1

Δx2 [kxi+1/2,j,k
 (ψi+1,j,k $ ψi,j,k) $ 

 $ kxi$1/2,j,k
 (ψi,j,k $ ψi$1,j,k)], 

 (Lh
2 ψ)i,j,k = 

vi,j+1/2,k ψi,j+1,k $ vi,j$1/2,k ψi,j$1,k

2Δy
 $ 

 $ 
1

Δy2 [kyi,j+1/2,k
 (ψi,j+1,k $ ψi,j,k) $ 

 $ kyi,j, $1/2k
 (ψi,j,k $ ψi,j$1,k)], 

 (L3 ψ)i,j,k = 
w

n
i,j,k+1/2 ψi,j,k+1 $ wn

i,j,k$1/2 ψi,j,k$1

2Δk
 $ 

 $ kzi,j,k+1/2
 
ψi,j,k+1 $ ψi,j,k

Δzk+1 Δk
 + kzi,j,k$1/2

 
ψi,j,k $ ψi,j,k$1

Δzk Δk
 . 

Using the Crank#Nicolson scheme at each 
fractional step [tn, tn+1], we obtain the splitting 
algorithm 

 
ψ
n+m/3

 $ ψn+(m$1)/3

Δt
 + Lh

m 
ψ
n+m/3

 + ψn+(m$1)/3

2
 = 0,  

 m = 1, 2, 3. 
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To improve the accuracy of calculations, the 
bicyclic rearrangement of splitting stages was used. 

At the second stage, the system of equations has 
the following form: 

 
∂U

∂t
 = $ 

1
C
 
∂p

∂x
 + 2(ωzV $ ωyW), 

 
∂V

∂t
 = $ 

1
C
 
∂p

∂y
 + 2(ωxW $ ωzU), 

 
∂W

∂t
 = $ 

1
C
 
∂p

∂z
 $ Cg + 2(ωyU $ ωxV), 

 
∂T

∂t
 = (1.5 $ κ) T div v, 

 
∂p

∂t
 = (0.5 $ κ) p div v, 

 
∂q

∂t
 = 0.5 q div v. 

Note that if one uses explicit finite-difference 
schemes at this stage, the condition of stability imposes 
a significant restriction upon the time step (Δt = 0.1 s 
for the vertical step of 30 m in the boundary layer of 
the atmosphere). So, to filter sound waves, we use the 
implicit finite-difference approximation of the first 
order of accuracy in time, i.e., the scheme of "natural 
filter": 

 
U

n+2
i,j,k $ Un+1

i,j,k

Δt
 = $ 

p
n+2
i+1/2,j,k $ pn+2

i$1/2,j,k

Cn
i,j,k Δx

 + 

 + 2(ωz V
n+2
i,j,k $ ωy W

n+2
i,j,k); (16) 

 
V

n+2
i,j,k $ Vn+1

i,j,k

Δt
 = $ 

p
n+2
i,j+1/2,k $ pn+2

i,j$1/2,k

Cn
i,j,k Δy

 + 

 + 2(ωx W
n+2
i,j,k $ ωz U

n+2
i,j,k); (17) 

 
W

n+2
i,j,k $ Wn+1

i,j,k

Δt
 = $ 

p
n+2
i,j,k+1/2 $ pn+2

i,j,k$1/2

Cn
i,j,k Δk

 $ 

 $ 
g

R
 

p
n+2
i,j,k 

Cn
i,j,k T

n
i,j,k

 + 2(ωy U
n+2
i,j,k $ ωx V

n+2
i,j,k); (18) 

 (pn+2
i,j,k $ pn+1

i,j,k)/Δt = (0.5 $ κ) pn
i,j,k d

n+2
i,j,k , (19) 

 (Tn+2
i,j,k $ Tn+1

i,j,k)/Δt = (1.5 $ κ) Tn
i,j,k d

n+2
i,j,k , 

 (qn+2
i,j,k $ qn+1

i,j,k)/Δt = 0.5 qn
i,j,k d

n+2
i,j,k , 

where 

 dn+2
i,j,k = 

U
n+2
i+1/2,j,k/Cni+1/2,j,k $ Un+2

i$1/2,j,k/Cn
i$1/2,j,k

Δx
 +  

 + 
V

n+2
i,j+1/2,k/Cn

i,j+1/2,k $ Vn+2
i,j$1/2,k/Cni,j$1/2,k

Δy
 +  

 + 
W

n+2
i,j,k+1/2/Cni,j,k+1/2 $ Wn+2

i,j,k$1/2/Cn
i,j,k$1/2

Δk
 . 

Substituting the velocity components from 
Eqs. (16)$(18) into Eq. (19), we obtain the equation 
for pressure. This equation is solved by the component-
by-component splitting method over the coordinates. 
After solving the equation for pressure, one calculates 
U, V, W, T, and q. The algorithm is realized by use of 
the non-monotonic Thomas algorithm.2 

The constructed finite-difference schemes are quite 

stable; they are of the first order of approximation in 
time and the second one in coordinates. 

The velocities and turbulence characteristics, 
which are obtained using the hydrothermodynamic 
model, are used in calculating gas and aerosol pollutant 
transfer.3 

To illustrate the capabilities of the model, let us 
present the results of numerical simulation for the 
influence of air flow structure upon the pollutant 
transport in an urban area. The calculations were 
performed for the following values of the parameters: 
the vertical and horizontal steps were 2 m; the time 
step was chosen so that the Courant criterion was 
satisfied for the highest velocity of a non-disturbed 
flow, 10 m/s.  Figure 1 presents the pollutant 
concentration isolines in percent of the highest 
concentration at the emission point over a not very high 
building. If the source is situated in a rarefaction zone, 
the pollutant falls into a leeward area behind a high 
building and spreads in the direction opposite to the 
nondisturbed flow. Pollutant concentration can be 
reduced only with a considerable increase of a stack 
height what is not practical in this particular case. 

 
 

 
 

Fig. 1. Influence of the air flow structure upon the pollutant 
spread in an urban area. 

Similar results have been obtained in simulating 
pollutant spread in a leeward slope when the pollutant 
plume is kept by a leeward vortex or held down to the 
Earth by a downward flow if the pollutant source is 
situated below the vortex zone. 
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The proposed model can be used in studying and 
forecasting meso- and microclimate conditions in the 
presence of anthropogenic factors. 
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