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The development and application of two numerical models of aerosol transport under urban 

conditions are discussed.  The microscale model is applied to buildings and city canyons of complicated 
shape using the finite-element method.  The mesoscale model is based on finite differences and takes into 
account the structure of the Earth's surface with the help of the roughness length concept.  The results of 
model calculations for different types of surface inhomogeneities are presented.  Qualitative agreement 
between theory and measurement data is obtained. 

 

1. Introduction 
 
Detailed studies of aerosol propagation and 

associated climatic characteristics have attracted ever-
growing interest.1  Information about meteorological 
fields such as temperature, pressure, humidity, etc. is 
key to modeling transport and diffusion of aerosols.  
Such information is often obtained by using simplified 
engineering formulas for typical meteorological 
situations.  However, in complicated regions, detailed 
mathematical models based on a detailed description of 
the corresponding physical processes are needed.2  

To reduce the number of calculations, it is natural 
to calculate the meteorological background in two 
steps.3  The first step calculates the microclimate of the 
region in which the object of interest is located.  In the 
second step the data obtained in the first step are used 
as input parameters in a detailed simulation of the 
meteorological and aerosol fields on a microscale.  
Correspondingly, in the present work we consider two 
types of models: mesoscale and microscale.  The 
mesoscale model is based on the method of finite 
differences and used a "surface-tracking" coordinate 
system.  The calculation region then becomes quite 
simple.  However, the transformed equations become 
considerably more complicated for discretization.  
Generally speaking, such an approach is suitable only 
in the case of a fairly level surface.4  The microscale 
model is based on the method of finite elements and is 
applied for simulating processes in urban settings, 
where a smooth substitution of variables is no longer 
applicable.  

The problem of simulating aerosol transport in the 
atmosphere has a number of characteristic features, 
including the necessity to construct economical 
algorithms that provide an adequate description of 
regions where the calculated fields vary abruptly 
without a significant refinement of the grid and 
suppress spurious oscillations near the aerosol-cloud 
propagation front.  In Ref. 5 we considered a 

variational approach to simulating transport and 
diffusion of aerosols.  Here we use a simpler finite-
element scheme based on the so-called Petrov$Galerkin 
approach, which consists in adding an artificial 
viscosity in the direction of the flux.6  This scheme 
possesses high accuracy and reliability.  

Section 2 considers simulation of the 
meteorological fields based on the complete (non-
hydrostatic) system of equations of atmospheric 
dynamics.  The fields so obtained are used as a 
background against which the aerosol propagates.  
Section 3 addresses transport of a pollutant in the 
atmosphere for large Reynolds numbers, and the 
calculational algorithm used here is based on the 
Petrov$Galerkin method.  Finally, Section 4 presents 
results of some preliminary numerical experiments, both 
for a simple region and for the case of orography with 
large spatial gradients.  With the intention of using the 
considered models to simulate aerosol transport in 
urban settings, Section 4 also presents a sample 
calculation of atmospheric characteristics above a 
region of enhanced roughness.  

 

2. Calculation of the meteorological 
background 

 

The mesoscale (outer) model is based on the 
complete (non-hydrostatic) system of equations of 
atmospheric dynamics  
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The mesoscale model is discretized by finite differences 
and uses the following substitution of variables, which 
transforms a region with complicated orography into a 
region with simple structure:  

η = H(z $ zs)/(H $ zs) , 

zs is the height of the orography, H is the height of the 
simulation region.  Here H = const.  

G1/2 = 1 $ zs/H ,    G13 = 
1
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 $ 1   
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The microscale (inner) model is discretized by 
finite elements and does not use the above substitution 
of variables.  

In the equations U = $ρu, V = $ρv, W = $ρw, 
P = p′, where p′, θ′ are the deviations from the 

reference state of the pressure $p and potential 

temperature 
$θ; s is the specific humidity, Cs is the 

speed of a sound wave, ug and vg are the components of 
the geostrophic wind, representing the synoptic part of 
the pressure, f1 and f2 are the Coriolis parameters, and 
g is the acceleration due to gravity.  

The terms Ru, Rv, Rω, Rθ, Rs  describe processes 
on a subgrid scale.  To parametrize the turbulence, we 
use a simple scheme based on the calculation of the 
Blakadar mixing path.2  The ordinary logarithmic wind 
profiles between the surface and the first atmospheric 
layer are estimated.  As the standard roughness we 
choose 0.1 m.  The mesoscale model considers urban 
settings as regions of enhanced roughness (see the 
sample calculation in Section 4).  

We will not dwell here on details of the 
formulation and numerical realization of the equations 
of atmospheric dynamics (see Refs. 5 and 6).  We go on 
now to the algorithm of aerosol propagation.  

 

3. Modeling of propagation of aerosols 
 

The convection$diffusion equation for transport of 
a substance in the atmosphere has the following form1:  

 
äΦ
ät

 = ∇ (K∇Φ $ vΦ) $ λΦ + f .  (1) 

Here Φ(x, t) is the aerosol concentration, K(x, t) is 
the dispersion tensor, v(x, t) is the wind velocity, 
λ(x, t) describes the chemical reactions, f(x, t) is the 
source or sink term, and x ∈ Rd, d = 1, 2, 3.  

We discretize this problem by the so-called 
standard Galerkin method, sometimes also called the 
 

Bubnov$Galerkin method (see, e.g., Ref. 8).  This 
method gives good numerical results for moderate 
Reynolds numbers.  However, for large Reynolds 
numbers, i.e., for the case when advection strongly 
dominates diffusion, the results obtained by the 
standard Galerkin method are strongly oscillatory and 
bear little resemblance to the exact solution.  One way 
of suppressing undesirable oscillations is the Petrov$
Galerkin method.  To simplify the notation, we 
describe this method in simplified form.  We assume 
that the process of aerosol transport is stationary and 
that chemical reactions are absent.  Moreover, we 
assume that K = const, K ≤ 1, and that the velocity 
vector v is constant and normalized, i.e., ⏐v⏐ = 1.  We 
emphasize, however, that the following analysis can be 
easily generalized to the general case.   

We denote as ∇vΦ = vx
∂Φ
∂x  + vy

∂Φ
∂y  + vz

∂Φ
∂z  the 

derivative in the direction v.  Let the boundary of the 
region Γ consists of four parts Γ1, Γ2, Γ3, Γ4 (see the 
sample calculation in Section 4 below). Thus our 
problem takes the form  

$ KΔΦ + ∇vΦ = f ,  

 Φ = ΦD   on   Γ2 ,  (2) 

äΦ
än

 = 0   on   Γ1, Γ3, Γ4. 

We use the standard notation for the scalar 
product 

(Φ, Ψ) = ⌡⌠
Ω

 

 
ΦΨ dΩ ,   (∇Φ, ∇Ψ) = ⌡⌠

Ω

 

 
∇Φ ∇Ψ dΩ . 

Multiplying this equation by the test function 
Ψ + δ∇vΨ, where Ψ = 0, on Γ2, and integrating over Ω, 
we obtain  

K(∇Φ, ∇Ψ) $ Kδ(ΔΦ, ∇vΨ) + (∇vΦ, Ψ + δ∇vΨ) = 

 = (f, Ψ + δ∇Ψv) ,  (3) 

where the term  K(ΔΦ, Ψ) was integrated by parts, and 
δ is a positive parameter which will be determined 
below.  To formulate the discrete analog of this 
equation, we replace, in analogy with the standard 
Galerkin method, Φ and Ψ by the piecewise linear 

approximations 
$Φ and 

$Ψ, which interpolate exactly at 
the triangulation nodes.  

Since the function 
$Φ is piecewise linear, Δ$Φ = 0  

inside each triangle Ωe  and therefore (Δ$Φ, ∇v
$Ψ) = 0.  

Omitting the overplaced bar for convenience, Eq. (3) 
reduces to the form 

 K(∇Φ, ∇Ψ) + δ(∇vΦ, ∇vΨ) + (∇vΦ, Ψ) = 

 = (f, Ψ + δ∇vΨ) .  (4) 

The difference from the standard Galerkin form 
consists in the presence of the terms δ(∇vΦ, ∇vΨ) and 
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δ(f, ∇vΨ).  Integrating the term δ(∇vΦ, ∇vΨ) formally 
by parts, we obtain $δ(∇vvΦ, Ψ) (∇vvΦ denotes the 
second derivative of Φ in the direction v).  This means 
that it is possible to interpret the Petrov$Galerkin 
method as the addition of an artificial viscosity of 
magnitude δ in the direction v. The term δ(∇vΦ, ∇vΨ) 
is also numerically discretized in an analogous way as 
the diffusion term in the standard Galerkin method.  
The remaining calculations were performed in the same 
way as in the standard Galerkin method.  

Finally, the magnitude of the parameter δ is 
assigned to be δ = 0(h/∇), where h is a typical grid-
cell size.  Numerical experiments showed that values 
δ = ch/v, where 0.2 ≤ “ ≤ 1.5, give completely 
satisfactory results.  

In closing, we underscore the main difference 
between the Petrov$Galerkin method and the standard 
Galerkin method.  The Petrov$Galerkin method is 
based on multiplying by a test function of the form 
Ψ + δ∇vΨ, where Ψ is piecewise linear and continuous.  
In particular, the test functions are discontinuous due 
to the discontinuity of the term δ∇vΨ.  This means that 
the test functions belong to a space which differs from 
the space of test functions where the discrete solution Φ 
is sought.  On the other hand, in the standard Galerkin 
method the spaces of simple functions and test 
functions coincide.  

 

4. Sample calculations 
 

Our first numerical experiments were performed 
for a regular region and their goal consisted in 
demonstrating the advantages of the Petrov$Galerkin 
method.  

Consider the problem  

$ KΔΦ + vx 
äΦ
äx

 + vy 
äΦ
äy

 = 0 ,   Φ = ΦD   on   Γ2 , 

Φ = 0   on   Γ1, Γ4,    
äΦ
än

 = 0   on   Γ3 , 

where K = 10$3; v = (vx, vy) = (cos100, sin100); 
Ω = {(x, y): 0 < x,y < 1} is the unit square, and Γ1, Γ2, 
Γ3, Γ4 are the bottom, left boundary, top, and right 
boundary of Ω, respectively.  Further, ΦD = 0 for 
x = 0, 0 < y <1/2; ΦD = 1 for x = 0, 1/2 < y < 1.  The 
finite-element grid consists of 512 triangular elements 
and is uniform along both the horizontal and the 
vertical.  

The exact solution possesses both an inner layer 
and a boundary layer on Γ4.  It turns out that the 
goodness of the numerical solution depends 
substantially on the choice of the parameter δ.  Figure 
1 is for δ = 1. The calculations show that the solution 
becomes smoother if we introduce a larger artificial 
viscosity coefficient, but in the case of too large a 
viscosity the solution loses its information content.  

The mesoscale model treats urban settings as 
regions of enhanced roughness.  Let us consider the 
results of a simulation of a typical situation.  

 
Fig. 1. Aerosol concentration in the Petrov$Galerkin method.  

 
An island of 1-meter roughness is in the center of 

a region with dimensions 10 km × 10 km.  The top of 
the calculation region is 5 km.  A geostrophic flow 
propagates from west to east with a velocity of 5 m/s.  
As the reference state we adopt the standard 
atmospheric stratification with a gradient of 3.5 K/km.  
An absorbing layer is located above 1500 m.  The 
calculational grid consists of 31 × 31 × 16 points with 
horizontal grid-cell size 333 m and variable vertical 
grid-cell size.  Figure 2 shows a west-to-east cross 
section of the vertical velocity field through the center 
of the island.  A relatively flat layer of uplift is seen 
above the region of roughness.  The picture of the flow 
is found to be in qualitative agreement with theoretical 
predictions.9  

 
Fig. 2. Vertical velocity for enhanced roughness.  
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Fig. 3. Vertical velocity for enhanced orography. 

 

We also performed an experiment with the inner 
model.  Figure 3 shows the vertical velocity field for 
steady-state flow above an obstacle of the form 
h = h0/(1 + x2/a2).   Here h0 = 500 m and a = 500 m.  
The dimensions of the region are 7 km × 5 km, the velocity 
of the outer flow is ug = 5 m/s, vg = 0, and the 31 × 16 grid 
 

consists of quadrilateral finite elements, which are 
uniform along the horizontal and become more 
densely distributed toward the surface.  In the upper 
part of the region we have introduced a damping 
layer to decrease reflection of waves from the upper 
boundary.  The stratification of the reference state is 
described by the standard atmosphere with a gradient 
of 3.5 K/km.   

The overall structure of the flow corresponds to 
the available data.10   
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