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In this paper we consider how the  multimode excitation of stimulated Raman scattering in a 

spherical particle influences the angular distribution of radiation intensity in the far zone. It is shown 
that at multimode excitation of the SRS the directional pattern becomes asymmetric in contrast to the 
case when a single resonance mode of the particle participates in this process. The degree of asymmetry 
significantly depends  on the combination of modes excited in the particle. This causes either a significant 
increase in the intensity of the wave scattered  in the backward direction or its weakening in this 
direction. The results are compared with those for the case of elastic scattering. 

 

Introduction 

As shown in numerous experimental and theoretical 
studies, a transparent micrometer-size particle can act, 
when exposed to an intense laser radiation, as a source 
of coherent radiation at Raman frequencies because of 
different nonlinear optical effects of light scattering in 
the particle’s volume [stimulated Raman scattering 
(SRS), stimulated Brillouin scattering (SBS), 
stimulated fluorescence (SF), etc.]. This causes the 
interest in the studies of the processes of stimulated 
scattering of light in microparticles and opens up wide 
prospects for different applications of these effects to 
diagnostics of aerosols,1,2 Raman microspectroscopy,3$5 
and laser technology.6$9 

The angular distribution of radiation scattered 
from a micrometer-size particle has  theoretically been 
studied in Ref. 10. It was shown that the angular 
pattern of scattered radiation, when "supported" by 
only one of its resonance modes, is symmetric in the 
forward and backward directions. This angular 
distribution follows from the corresponding symmetry 
of the spatial distribution of the field of the emitting 
mode of stimulated scattering in a particle and 
characterizes just the unimodal regime of stimulated 
scattering. Geints and Zemlyanov (Ref. 10) have also 
estimated the angular behavior of the intensity of 
scattering at multimode excitation of the stimulated 
scattering in a particle. It turned out that in this case 
the directional pattern deforms: it extends forward 
along the direction of pump radiation similarly to the 
angular distribution of the elastic scattering. However, 
in contrast to the latter, the angular structure of the 
field of stimulated scattering is characterized by a 
lower symmetry of the forward$to-backward intensity 
ratio and by a far deeper dip at the scattering angles 
near  θ ≈ 90°. 

This paper continues the studies discussed in 
Ref. 10. It considers the regularities of the angular 

distribution of the field of stimulated scattering from 
transparent particles under conditions of multimode 
excitation in a more detail. 

The physical mechanism of excitation of stimulated 
scattering in a spherical particle is associated with the 
presence of natural electromagnetic modes with high Q-
factor in it.11  If one component of the Raman "noise" 
spectrum falls in resonance with a natural mode of a 
droplet oscillations, then amplification of this wave 
dominates over the absorption; thus establishing the 
conditions favoring the stimulated scattering. One of 
the peculiarities of the resonance spectrum of large 
particles is high density of natural modes on the 

frequency scale. The mean distance between modes of 
the same polarization (Še  or Šl) and of the same 
order l, for example, for a water droplet with the 
diffraction parameter xa = 50 is Δν ∼ 10$2 cm$1. The 
halfwidth of these modes c nl varies within 10$

4 ≤ c nl ≤ 10$1 cm$1. Consequently, the resonance curves 
of some natural modes can intersect (Fig. 1), and 
several resonance modes of a particle can participate in 
the amplification of a spontaneous signal to the 
stimulated one. 

Basic equations 

Let us consider the problem under study in the 
following formulation. Let a spherical particle with the 
dielectric constant εa is exposed to the plane 
electromagnetic wave incident along the positive 
direction of the axis z. The vector of the electric field is 
E0(x, y, z; t) = E

∼
0(x,y) eiωt $ ikz. When in the particle 

this wave excites the field of stimulated scattering with 
the electric vector ES(r', t) at the frequency ωS.  The 
problem is to find the intensity of the field of 
stimulated scattering at the point with the radius 
vector r outside the particle. The geometry of the 
problem is shown in Fig. 2. 
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Fig. 1. Scheme of the positions of resonance contours of 
natural electromagnetic modes of a spherical particle at a 
multimode excitation of stimulated scattering: contours of the 

Še1
81-mode (1), Še2

75-mode (2), and Še4
66-mode (3). The 

shaded contour is the basic resonance mode Še3
70. 

 

 
 

Fig. 2. Geometry of the problem on scattering of a light wave 
by a spherical particle. 
 

Our considerations starts from Helmholtz equation 

for the vector potential of the electromagnetic field 
A(r, t) at the frequency of Raman scattering12: 

 ΔA(r, t) + k2 A(r, t) = $ Ja(r, t)  (1) 

under the condition that div A(r, t) = 0, which is valid 
in the absence of free charges in the particle. Here 

Ja(r, t) = εa 
∂ES(r, t)

∂t  is the density of polarization 

currents induced by the internal field of the particle; εa 
is the dielectric constant of the particle; k is the wave 
number. The components of the sought electromagnetic 
field can be expressed through the vector potential as  

 HS(r, t) = rot A(r, t) ;    ES(r, t) = $ 
∂A(r, t)

∂t  . 

The solution to Eq. (1) is known.9  The electric 
field ES(r, t) at an arbitrary point in space can be 
found from the following equation13: 

εa ES(r, t) = rot rot ⌡⌠
Va

 
(εa $ 1) ES(r′, t) e$ ikR

4πR
 dr′,  (2) 

where R = |r $ r′| is the distance between the point of 
observation and the elementary source within the 
particle. The integral is taken over the whole volume 
occupied by the sources of scattered waves (the particle 
volume Va). 

Taking into account that R = r2 + (r′)2 $ 2r r′cosγ ≈ 
≈ r $ r′cos γ and interchanging the operations of 
integration and differentiation, we have in the far zone 
(kr >> 1, r >> r′) that 

 ES(r, t) ≈ 
k2(εa $ 1)

4πr
 exp {iωs t $ ikr} × 

 × ⌡⌠
Va

 ES(r′, t) eik= r′ cos γ dr′.  (3) 

Here ka = εak is the wave number inside the particle;  
γ is the angle between the vectors r and r′, r = | r |. Note 
that the radial component of the electric field 
Er << (Eθ, Eϕ), and thus of the field far from the 

particle is a diverging transverse  spherical wave 
formed by superposition of fields emitted by the 
polarized elements of the particle volume. 

Similar integral equation can be derived for 
another vector component of the electromagnetic field 
HS(r, t). The main advantage of this approach to 
determination of the spatial structure of the field of 
stimulated scattering over the traditional method for 
solution of the differential equations for Debye 
potentials used in Mie theory14 is that the integral 
equation (3) itself contains its boundary conditions. 
Therefore, any change in the shape of a scatterer does 
not change the structure of solution (3) but changes 
only the limits of integration. 

In the general case integral equation (3) can be 
solved, for example, by the method of successive 
approximations.13  However, we believe that the spatial 
distribution of the field of stimulated scattering in the 
particle corresponds to the structure of the field of one 
natural resonance mode of the particle, that is, the 
unimodal excitation of stimulated scattering takes 
place.  Then we can write 

 ES(r, t) = 
AE(t, ka a)

ka r
 ψn(ka r) Mn1(θ, ϕ) + 

+ complex conjugated 

 for TEn-modes, 

 ES(r, t) = 
AM(t, ka a)

ka r
 
1
ka

 ∇ [Mn1 (θ, ϕ) ψn(ka r)] + 

+ complex conjugated 

 for Tln-modes,  (4) 

where a is the particle radius; AE and AM are some 
amplitude coefficients determining the time behavior of 
the process of stimulated scattering and dependent on the 
resonance properties of a selected mode; Mn1(θ, ϕ) are 
the spherical vector$harmonics15; ψn are Ricatti#Bessel 
functions. The specific form of the coefficients AE and AM 
can be found from solution of the set of related equations 
for the main and Stokes waves in the particle.16 
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To make calculations more convenient, let us 
expand Eq. (4), for example for the Tln-mode, over 
spherical components (er, eθ, eϕ): 

 ES(r, t) = 
AM(t, ka a)

ka r
 × 

 × [
n(n + 1)

ka r
 ψn(ka r) cos ϕ sin θ πn1(θ) er + 

 + ψn
′(ka r) (cos ϕ τn1(θ) eθ $ sin ϕ πn1(θ) eϕ)],  (5) 

where πn1(θ) and τn1(θ) are the angular functions: 

 πnl (θ) = 
Pnl (cos θ)

sin θ ; 

 τnl (θ) = 
∂

∂θ[Pnl (cos θ)], 

Pnl (cos θ) are the adjoint Legendre polynomials. 
Let us also present the exponent in the integrand 

of Eq. (3) as a sum of spherical functions (using the 
theorem of summation17): 

 eika r cos γ = ∑
m = 0

∞

 im(2m + 1) jm(ka r) Pm(cos γ) ,  (6) 

where jm(ka r) = 
1

ka r
 ψm(ka r) is Bessel spherical 

function. 
Taking into account that 

 cos γ = cos θ cos θ′ + sin θ sin θ′ cos (ϕ $ ϕ′) 

and applying the expansion formula, which is well-
known from the theory of Legendre functions,17 

 Pm(cos γ) = {Pm(cos θ) Pm(cos θ′) + 

 + 2 ∑
l = 1

m

 
(n $ l)!
(n + l)!

Pml(cos θ′) Pml(cos θ′) cos[l(ϕ $ ϕ′)]}, 

we transform Eq. (6) as: 

eika r 

cos
 

γ
 = ∑

m = 0

∞

 im(2m + 1) jm(ka 

r) {Pm(cos θ) Pm(cos θ′) + 

+ 2 ∑
l = 1

m

 
(m $ l)!
(m + l)!

 Pml(cos θ) Pml(cos θ′) cos [l(ϕ $ ϕ′)]}. 

(7) 

Upon substitution of Eqs. (5) and (7) into the integral 
(3), the equation for the spherical component of the 
electric field, for example along the unit vector eθ, 
takes the form  

 Eθ(r, t) = 
k2(εa $ 1)

4πr
 exp{iωs t $ ikr} 

AM(t, ka a)

ka
2  × 

 ×� ∑
m = 0

∞

 im (2m + 1)⌡⌠
0

2π

cos ϕ′ dϕ′⌡⌠
0

π

 τj1(θ′){τn0(θ) πn0(θ′) + 

+ 2 ∑
l = 1

m

 
(n $ l)!
(n + l)!

 τnl(θ) πnl(θ′) cos[l(ϕ $ ϕ′)]} sin(θ′) dθ′ × 

 × ⌡⌠
0

a

 ψn(ka r′) ψn
′(ka r′) dr′ .  (8) 

As seen, the equation derived involves the integrals 
of the form  

 ⌡⌠
0

2π

 cos ϕ′ cos [l(ϕ $ ϕ′)] dϕ′ = 
⎩
⎨⎧
0 at l ≠ 1
π cos ϕ at l = 1.

 

Then 

 Eθ(r, t) = (i)n (2n + 1) exp {iωs t $ ikr} × 

 × 
AM(t, ka a) (εa $ 1)

2 ka r
 cos ϕ τn1(θ) ℜ1(nn) ,  (9) 

where ℜ1(nj) = ⌡⌠
0

a

 ψn
′(ka r) ψj(ka r′) dr′. When deriving 

Eq. (9), we took into account the fact that the angular 
functions τn1 and πn1 are orthogonal. The equation for 
the component of the sought field along the axis eϕ has 

the following form: 

 Eϕ(r, t) = $ (i)n (2n + 1) exp {iωs t $ ikr} × 

 × 
AM(t, ka a) (εa $ 1)

2 ka r
 sin ϕ πn1(θ) ℜ1(nn) .  (10) 

Remind that the mode index n points at the 
particular natural electromagnetic mode supporting the 
process of formation of the stimulated scattering wave 
in the particle. For the TEn resonance modes of the 
particle, the equations for the spherical components of 
the field of stimulated radiation are similar to Eq. (10) 
upon the replacement of the coefficients AM → iAE; 
πj1(θ) ↔ τj1(θ); ℜ1(nj) → ℜ2(nj), where 

 ℜ2(n j) = ⌡⌠
0

a

 ψn(ka r) ψj(ka r′) dr′. 

The coefficients ℜ1(nn) and ℜ2(nn) represent the actual 
thickness of the emitting layer in the particle. 

As follows from Eqs. (9) and (10), the angular 
dependence of the components of the vector ES  outside 
the particle is the same as inside it. Generally speaking, 
this would be expected starting from the requirement of 
continuity of the tangential components of the field 
when passing through the particle surface. 

The intensity of SRS radiation from the particle 
for the Tln  natural modes is  

 I(θ, ϕ, t) = Iθ + Iϕ = 

 = (2n + 1)2 ⏐ℜ1(nn)⏐
2
  

c⏐AM(t, ka a)⏐
2
 (εa $ 1)2

32π ε1/2
a  k2 r2

 × 

 × {cos2ϕ τn1
2 (θ) + sin2ϕ πn1

2 (θ)} .  (11) 

In the case of multimode excitation of the SRS, 
the Eqs. (9) and (10) take the form 

 Eθ(r, t) = 
(εa $ 1)

2ka r
 exp{iωSt $ ikr} cos ϕ × 

 × Σ
n

(i)n(2n + 1)AMn(t, ka a) τn1(θ) ℜ1(nn) ;  (12) 
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 Eϕ(r, t) = $ 
(εa $ 1)

2ka r
 exp{iωSt $ ikr} sin ϕ × 

 × Σ
n

(i)n(2n + 1)AMn(t, ka a) πn1(θ)ℜ1(nn).  (13) 

Equation (11) also includes the sum over all 
interacting modes. The contribution from every mode to 
the total intensity of scattering is proportional to the 
volume occupied by the mode and to the Q-factor of a 
partial resonance, what is taken into account in the 
coefficient AMn : 

I(θ, ϕ, t) = Σ
n

(Iθn + Iϕn) = 
c(εa $ 1)

2

32π2ε1/2
a

k2r2
 × 

 × Σ
n

 Σ
m

 (2n + 1) (2m + 1) AMn A*
Mn × 

× {cos2 ϕ τn1τ*m1
2 + sin2

 ϕ πn1π*m1}ℜ1(nn) ℜ*1(mm).  (14) 

As seen from Eq. (14), the equation for the total 

intensity involves the terms of the form (τn1τ*m1) 
(ℜ1(nn) ℜ1(mm)) besides the non-coherent contributions 
of individual resonance modes. These terms take 
account of the coherent interaction of individual partial 
harmonics. The degree of this interaction depends on 
the spatial overlapping of the modes (the coefficients 
ℜ1(nn)). As calculations show, this degree is maximum 
if the resonance modes have the same order. At the 
same time, it is just these  "cross" terms that introduce 
asymmetry into the angular distribution of the scattered 
radiation intensity. 

Results of numerical calculations 

The main difficulty in performing model 
calculations of the angular distribution of intensity of 
the stimulated scattering in the case of multimode 
excitation is caused by the participation of modes with 
different values of the mode index n and the order l in 
this process. Consequently, all these modes have 
different Q-factors and occupy different mode volumes. 
The problem of competition of modes in the process of 
multimode excitation of stimulated scattering or, in 
other words, the question on which mode dominates 
over others is still practically not studied. That is why 
there is no a unique criterion allowing even relative 
determination of the amplitude AMn.  In this 
connection it is worth, in our opinion, assuming that 
all modes interacting in the particle have equal 
amplitudes, that is, the equality 

 (2n1 + 1)⏐AMn1(t, ka a) ℜ1(n1n1)
⏐ = 

 = (2n2 + 1)⏐AMn2(t, ka a)ℜ2(n2n2)
⏐ = ... .  (15) 

is valid. 
For numerical estimates of the intensity of a 

scattered wave by Eq. (14), different combinations of 
the resonance modes having frequencies close to 
ωS = 15400 cm$1 (Table 1) have been determined. The 
frequency ωS  corresponds to the center of Stokes line 
in the Raman spectrum of water irradiated with the 
radiation at λ = 0.532 μm. 

 

Table 1 
 

 
Resonance mode 

 
Resonance radius =0, 

μm 

 
Radiation Q-factor of 

the mode 

 
Halfwidth of the 

resonance curve cnl 

1
a0

 ⏐ℜ1(nn)⏐,  

1
a0

 ⏐ℜ2(nn)⏐ 

TE3
70

 6.842019 429.79 1.53,10-1 0.306 

TE5
62

 6.873510 45.81 1.45 0.310 

TE4
66

 6.866961 84.99 7.81⋅10$1 0.310 

TE2
75

 6.857325 1.95⋅104 3.38⋅10$3 0.308 

TE1
81

 6.855499 1.89⋅107 3.48⋅10$6 0.308 

Tl3
70

 6.868196 286.11 2.32⋅10$1 0.841⋅10$1 

Tl5
62

 6.880742 17.41 3.82 0.753⋅10$1 

Tl4
66

 6.879255 46.89 1.41 0.753⋅10$1 

Tl2
74

 6.814307 1.13⋅104 5.81⋅10$3 0.669⋅10$1 

Tl2
75

 6.897084 1.35⋅104 4.93⋅10$3 0.743⋅10$1 

Tl1
80

 6.821987 1.09⋅107 6.03⋅10$6 0.744⋅10$1 

TE3
70

 6.842019 429.79 1.53⋅10$1 0.306 

Tl5
62

 6.880742 17.41 3.82 0.753⋅10$1 

Tl4
66

 6.879255 46.89 1.41 0.753⋅10$1 

Tl2
74

 6.814307 1.13⋅104 5.81⋅10$3 0.669⋅10$1 

Tl2
75

 6.897084 1.35⋅104 4.93⋅10$3 0.743⋅10$1 

Tl1
80

 6.821987 1.09⋅107 6.03⋅10$6 0.744⋅10$1 

Tl3
70

 6.868196 286.11 2.32⋅10$1 0.841⋅10$1 

TE5
62

 6.873510 45.81 1.45 0.310 

TE4
66

 6.866961 84.99 7.81⋅10$1 0.310 

TE2
75

 6.857325 1.95⋅104 3.38⋅10$3 0.308 

TE1
81

 6.855499 1.89⋅107 3.48⋅10$6 0.308 
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Figure 3 demonstrates the theoretically calculated 
results on the angular dependence of SRS at unimodal 
and multimode excitation in a water droplet with the 
radius =0 = 6.86 μm (all curves are smoothed to be 
more descriptive). As seen from Fig. 3, the directional 
pattern is practically symmetric in the case of SRS 
supported by only one resonance mode (the Tl3

70
 mode 

in this case). This can be explained by the 
corresponding symmetry of the internal emitting field 
in the droplet (Fig. 4). 
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Fig. 3. Angular distribution of the intensity of SRS from a 

water droplet in the cases of excitation of the Še3
70 resonance 

mode (1) and the combination of the Še3
70, Še5

62, Še4
66, Še2

75, 

and Še1
81 modes (2). Curve 3 is for the elastic scattering. 
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Fig. 4. Distribution of the intensity of the internal optical 

field in a droplet for the Še3
70 resonance mode. The horizontal 

arrow shows the incidence direction of the pump radiation.  

At the same time, the angular distribution of Raman 
radiation has the maximum in the forward and 
backward directions about the direction of incident 
radiation and the minimum along the orthogonal 
direction; it is symmetric with the period multiple of  
π/2. In contrast to the directional pattern of the 
elastic scattering (curve 3 in Fig. 3), the directional 
pattern of SRS is more uniform because of the absence 
of the Raman field component due to diffraction on the 
particle. 
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Fig. 5. Behavior of the angular functions for the Še-modes 
(a) and Šl-modes (b). The figures at the curves show the 
mode index n. 
 

At multimode excitation of the SRS, which 
involves coherent combining of several resonance 
modes, the directional pattern becomes significantly 
asymmetric. Besides, it turns out that the degree of its 
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uniformity significantly depends on which modes 
support the scattering process. As seen from Fig. 5, the 
behavior of the angular functions πn1(θ) and τn1(θ), 
that determine the directional pattern of the scattered 
waves outside the particle, differs for the modes with 
even and odd values of the mode index n. Thus, under 
certain conditions, combining of modes with even 

numbers results in a significant increase in the amplitude 
of the resulting wave in the backward direction. At the 
same time, combining of modes with even and odd values 
of n leads to a decrease in the backscattering signal. 

We have considered different combinations of 
excitation of the resonance modes in a water droplet. 
For example, in the case of excitation of TE-modes in a 
droplet, the frequencies of the TE5

62
, TE4

66
, TE2

75
, and 

TE1
81

 modes  are close to the frequency of the main 

resonance TE 3
70

 mode (see Table 1). The SRS directional 

pattern for this combination is asymmetric being 
elongated in the forward direction (see Fig. 3). For the 
sake of comparison, Fig. 6 shows the angular 
distribution of the scattered radiation for the 
combination of the TE5

70
, TE4

74
, TE3

78
, TE2

83
, TE2

84
, and 

TE1
90

 resonance modes. As seen from Fig. 6, the SRS 

directional pattern in this case is more symmetric, 
because modes of mostly even orders participate in the 
process. The values of the signal intensity along the 
directions at 0 and 180° differ only by 1.5 times. Quite 
similar dependence I(θ) is  observed for the case of 
interaction among the Šl-modes in the droplet. 
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10–2 

10–1 

100 
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Fig. 6. Angular distribution of the intensity of SRS from a water 

droplet in the case of excitation of Še5
70 resonance mode (1) and 

the combination of the Še5
70, Še4

74, Še3
78, Še2

83, Še2
84, and Še1

90 

modes (2). Curve 3 shows the directional pattern of the elastic 
scattering. 

 

Besides, we have calculated the distribution of the 
field far from the particle in the case of excitation of 

the combination of both the TE- and TM-modes in the 
droplet. Figure  7 shows the corresponding directional 
patterns for the case of interaction among the TM3

70
, 

TE5
65

, TE4
66

, TE2
75

, and TE1
81

 resonance modes in a water 

droplet. As mentioned above, the formation of the SRS 

directional pattern is governed by the behavior of the 
angular functions and by the parity of the mode index n. 
For this combination of modes the directional pattern is 
asymmetric and, in contrast to the case of interaction of 
modes having the same polarization, close to the intensity 

distribution for the case with a single resonance mode. 
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Fig. 7. Angular distribution of the SRS intensity at the unimodal 

(Še3
70 resonance mode) excitation (1) and multimode 

(combination of the Še- and Šl-modes) excitation (2). 

 
It is also worth noting the fact that the angular 

behavior of the scattered wave intensity at multimode 

excitation is significantly sharper being primarily 

localized near the angles θ = 0 and 180°. In other 

directions, mutual suppression of the resonance modes 
with different values of the mode index takes place. 
This result follows from the accepted approximation on 

equal  amplitudes of the interacting resonance modes. 
The above results of theoretical studies are, in 

general, in a good agreement with the experimental 
data on the angular structure of the field of SRS 
induced by a laser radiation in isolated ethanol 
droplets.18   

Conclusion 

In this paper we have considered some 
peculiarities in the angular distribution of the field of 
stimulated scattering from transparent spherical 
micrometer-sized particles exposed to high-power 
laser radiation. The equations for the intensity of 
scattered waves at unimodal and multimode 
excitation of the SRS were derived. It was found that 
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the unimodal excitation always results in a symmetric 
angular distribution of the SRS intensity in the forward 
and backward directions. At the same time, 
participation of modes with close frequencies in the 
process of development of the SRS wave may result (at 
certain combinations of the modes) in asymmetry of the 
SRS directional pattern. The directional pattern in such 
a case is elongated in the forward direction, and the 
forward$to-bacward intensity ratio is about 10 to 20. 
Such a dependence, at the multimode excitation, is 
caused by the coherent interaction between the fields of 
natural modes of a particle resulting in their mutual 
amplification in some directions and mutual suppression 
in others. 
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