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The algorithm for reconstruction of a signal is proposed to be employed in the space information-

measuring system (SIMS) for detection and ranging of a source of pulsed optical radiation from space 
through a cloud layer. The analytical model of a path of signal propagation through the atmosphere with 
a cloud layer is used for deconvolution of signals. A modification of the well known mathematical 
apparatus, without changing characteristics of the model, as applied to direct problems, allows solution 
of the inverse problem, namely, determination of the values of the path’s parameters from SIMS data 
and, finally, deconvolution of the signal transmitted by a source. Computations are made automatically 
with a digital processor equipped with a fast transversal filter in the additive operating mode. 

 

1. Space global observation systems (SGOSs) 
including spacecraft, ground-based and space-borne 
computer systems, and equipment for remote sensing 
form a class of hierarchical information systems, whose 
elements are related to each other by the channels for 
exchange of information $ symbolic messages. The 
measuring tools enter into the SGOS as sources (not 
the only ones) of information.1 The presence of measuring 
tools alone does not yet make a SGOS a measuring 
system. 

Among possible applications of a SGOS as a 
measuring system there are detection, ranging, and 
measuring of characteristics of light emitting objects 
from their emissions. The case in point deals with 
indirect measurements; problems of optical remote 
sensing2,3 fall in the category of inverse and, as a rule, 
ill-posed problems.3,4  Methods of simulation of signal 
fields at inputs of space-borne receiving systems play an 
important part in solution of such problems.5 The 
SGOS becomes a specialized space-borne information-
measuring system (SIMS), if it includes adequate 
models of the objects sensed, signal propagation path, 
and the background, as well as the corresponding 
algorithms for data processing. These elements are an 
integral part of SIMS. 

The SIMS can be considered as a hypothetical 
measuring device (a version of the measuring and 
computational system), whose limiting capabilities can 
significantly exceed those of the initial one. The 
methods of reduction to such a hypothetical device in 
the Hilbert space have been developed in Ref. 6 as 
applied to the simplest mathematical model of 
measurements [`, Σ], given by the pair of operators (` 
is the model of a measuring device, Σ is the correlation 
operator of measurement errors), with and without 
restrictions on the noise level. In the considered case of 
detection and ranging of radiation sources, the problem 
of reduction becomes more complicated: additional 
difficulties associated with signal propagation through the 
atmosphere and signal deconvolution may arise.7 This 

paper is devoted to analysis of these difficulties and the 
ways to overcome them. 

The Monte Carlo method when applied to 

statistical simulation of the effects of radiation 

interaction with medium scatterers, in particular, 
fluctuations of the refractive index (Rayleigh 

scattering), aerosol particles, and water droplets of 
rain and clouds (Mie scattering), provides the best 

estimates of the influence of atmosphere on the signal 
propagating through it. Capabilities of the Monte 
Carlo method in application to problems of 
atmospheric optics are well known. This method is 

usually used as a reference one. However, its drawback 
is that it requires too cumbersome calculations. 
Among the numerical methods, only the Sivert Fn-
method based on expansion of the solution over the 

complete system of Keiz eigenfunctions (singular 
eigenfunctions of the homogeneous transfer equation) 

compares with the Monte Carlo method in accuracy 

and reliability. However, this method is cumbersome 
too.8 

Application of statistical simulation to monitoring 
of situations on the Earth’s surface is restricted to 
checking of results obtained with other, more efficient, 
computational methods. 

Computational methods that are based on simple 
analytical models of the propagation path involving only 
few parameters are quite efficient. Such a model has 
earlier been proposed in Ref. 9. It well describes the 

signal propagation through optically thick atmospheric 
layers. However, within the framework of this model it is 
difficult to solve inverse problems associated with 
determination of the parameters, which characterize the 
path from the system output data. At the same time, it is 
not always possible to determine the path parameters 
using direct methods, especially, on a real time scale. 
Below we describe a modified version of the theory based 
on the assumptions of the same degree of generality as in 
Ref. 9, but having the form which is more convenient for 
solving problems of remote sensing. 
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2. The consideration is carried out within the 
framework of the theory of systems and transformations 
with the use of mathematical apparatus of Fourier 
optics. The path of signal propagation is considered as a 
linear system, invariant to shifts. By the signal, with 
respect to which the system characteristics are defined, 
is meant the envelope of the pulse shape emitted by a 
radiation source. The frequency band, within which the 
transfer function of the path for such signals is non-
zero, does not exceed 100 kHz. It corresponds to the 
radio frequency region. Optical radiation is only a 
carrier of the signal; its frequency plays the role of a 
carrier frequency. 

The case in point is the reconstruction of the 
initial signal f(t) emitted by the source. When 
recorded, this signal is presented by the convolution 
with the pulse response of the path hi(t): 

 fi(t) = f(t)*hi(t) + ni(t), i = 1, ..., m  (1) 

or, in the frequency region, 

 Fi(ω) = F(ω) Hi(ω) + Ni(ω), i = 1, ..., m.  (2) 

Here m is the number of space platforms that have  
recorded the signal; usually m = 5$8. When writing 
Eqs. (1) and (2), we simplify the problem, restricting 
ourselves to consideration of the pulse response hi(t) 
and the transfer function Hi(ω) of the path and 
omitting, for simplicity, the instrumental function of 
the receiving device hins(t) and, correspondingly, 
Hins(ω). The signal is recorded against the background 
of noise. The noise is additive with the Gaussian 
distribution in time (n) and frequency (N) regions. The 
structure of response is known; it depends on the model 
of the path. However, values of parameters entering into 
the model are not always known. They should be found 
from the recorded signals fi(t) distorted by the noise. 

The problem of reconstructing the function f(t) 
from the recorded data fi(t) is an ill-posed one; it is 
presented by the integral equation (1) of the first kind. 
The following factors are used for its regularization: 
excessiveness of the system of equations (2), 
assumption of the frequency boundedness of all 
functions involved in calculations, smoothing properties 
of the additive NK-filter used for estimation of the 
model parameters. 

The model of the path is constructed in the 
following way. First we determine the intensity 
distribution and time lags of the radiation wave 
(integral lag) along all ray trajectories from ` to b  
at the upper boundary S2 of a cloud layer (Fig. 1) 
under the harmonic action exp(i ω t) at the input of  
the path. Then we sum up, at the receiving aperture of 
a spacecraft, all partial waves corresponding to 
different trajectories of signal propagation through the 
cloud layer. 

It is more convenient to integrate over the surface 
S3 rather than S2. The surface S3 is normal to the ray 
n b; its trace is shown in Fig. 1 by the line DE. For an 
œinfinitelyB far (n b ≈ 2 × 104 km) receiving device, the 

bunch of rays from the emitting spot on S3 (15 to 
20 km in diameter) can be considered as a plane 
parallel, neglecting the difference between the angle θ 
and, for example, θ1. 

 
Fig. 1. 

 

The spatiotemporal distribution of the intensity of 
optical radiation on S3 can be presented as 

I(r, ψ; ω) = f(r, ψ) f(Δ r) exp [$i ωτ(r, ψ; t0)$i ω Δ r] . (3) 

Parameterization in S3 is done with the use of the 
system of rays: the variables r and ψ characterize the 
point on the S3 that corresponds to the ray passing 
through the surface S3 at the point with cylindrical 
coordinates r and ψ. The designation τ = τ0 + τ1 is used 
for the delay τ0 of the wave at the point r in 
comparison with the wave propagating along the 
straight trajectory `b, τ0 = t0 [(cos ϕ)$1 + x sin θ $ 
$ “os θ], as well as the total delay caused by the 
diffuse character of radiation in the layer τ1 = t0 KR ≈ 
≈ 0.73(H/h) t0 R (Ref. 10). Upon introducing the 

variable R = 1/cos ϕ = 1 + (r/h)2, let us present τ 
in the form 

 τ = t0 [R(1 + K) + R2 $ 1 sin θ cos ψ $ cos θ] . (4) 

The structure of this equation has the greatest effect on 
the transfer function of the system H(ω). 

The functions f(r, ψ) = f(r) and f(Δ) describe the 
radiation flux density at the point (r, ψ) and the 
spread of photons’ mean free paths (delay times) for 
the rays arriving at this point from the source. 

To calculate f(r), we should first solve the 
problem of transfer of unpolarized optical radiation 
through the cloud layer to a spacecraft from a point 
source separated by (h $ H) distance from the cloud 
bottom. This problem can hardly be solved directly. Let 
us use the approach proposed in Ref. 11. The plane 
wave with the intensity ∼(hR)2 is thought to be 
incident on every elementary area of the cloud bottom 
at an angle ϕ = arccos (1/R). Propagation of a plane 
wave through the layer is calculated with the 
approximate methods of transfer, which allow simple 
analytical solutions for optically thick layers.  In our 
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calculations we used Chou method,12 which realizes 
Hartel idea on presentation of the radiation field in a 
layer as a sum of intensities of different scattering 
orders, each being characterized by its own phase and 
weighting functions. Besides, the calculations have 
been done, in parallel, by the method of approximation 
of Ambartsumyan equations.  Both of these methods 
gave close results, which can be well approximated by 
the smoothing function 

 f(r) = CR$1 exp ($R/R0),   R0 = 2/3 . (5) 

The value R0 = 2/3 can be corrected (if necessary)  
in the experiment on determination of the path’s 

parameters. 
The spread of the photons’ mean free paths for 

each trajectory is described by the normalized 
exponential function f(Δr) with the distribution width 
α t0 ≈ 2R(H/c) ≈ 3H/c. This is somewhat different 
from that accepted earlier in Ref. 9, but agrees well 
with the data from Ref. 13 and practically does not 
change the form of the function H(ω). 

3. Upon integration of the intensity distribution 
on the surface S3 over the variables r, ψ, and Δr, taking 
into account the equality rdr = h2RdR and Bessel 
equation 

 (2 π)$1 ⌡⌠
0

2π

 dψ exp(iv cos ψ) = J0(v), 

we obtain the following analytical equation: 

 H(ω) = A0[(i ωαt0 + 1)$1 cos θ] exp(i ωt0 cos θ) ×  

 × ⌡⌠
1

∞

 J0(ωt0 sin θ R2 $ 1) exp ($pR)dR ; (6) 

 p = (R0)$1 + i ωt0 (1 + K),  

which is convenient for making calculations. Integrals 
of this type are known quite well; they occur in 
different physical problems, for example, when 
calculating infinitely long lines with loss but without 
leakage.14 Taking into account the formulas of Laplace 
transformation, we derive from Eq. (6) the transfer 
function of the path: 

H(ω) = A0[(iωt0+ 1)$1
 cos θ] exp(iωt0 cos θ) W(ω) ; (7) 

 W(ω) = {exp [$s (i ω + r)2 $ q2]} [s (i ω + r)2 $ q2]$1, 

where 

 s = t0(1 + K) 1 $ (sin θ)2 (1 + K)$2 ; (7a) 

 r = (1 + K) (s2 R0)$1 ;   q = (1 + K)$1 r sin θ . 

For the pulse response of the system h(t) we have in 
this case: 

 h(t) =
Δ F$1{H(ω)} = h1(t) * h0(t) , (8) 

where 

 h1(t) = (α t0)$1 exp [$t(α t0)$1] , 

 h0 = A0(α t0)$1 exp ($r t0 cos θ) s$1 exp ($r t) ×  

  × I0(q (t + t0 cos θ)2 $ s2) U(t $ δ1) . (8a) 

Here δ1 = s $ t0 cos θ is the delay caused by signal 
propagation through the cloud layer. 

The constant `0 in Eqs. (7) and (8) can be found 
from the condition of energy balance: 

 H(0) = ⌡⌠
1

∞

 h(t) dt = E = ηΩ(π)$1 E0 cos θ , 

where e  is the power recorded at the output of the 
system assuming a delta-pulse at the system input; e 0 is 
the power emitted by the source into the upper half-
space (in our case e  = 1/2); η is the energy 
transmission coefficient of the cloud layer (0.2 to 0.3 at 
the optical thickness of the layer τ∼ ≥ 20); Ω = Sz$2 is 
the solid angle of the signal reception (S is the area of 
the entrance pupil, z is the distance from the source to 
the receiver). From H(0) = `0 cos θW(0) it follows 
that 
 A0 = (R0)$1 exp (1/R0) ηΩ(2π)$1 . 

4. Besides the observation angle θ, the variable 
parameters of the model are the altitude of the cloud 
top h and the geometrical thickness of the cloud layer 
H. They enter into Eqs. (7)$(10) through t0 = h/c, 
K = 0.73(H/h), and α = 3H/h. Below we consider 
the possibility of determining these parameters from the 
data of measurements carried out with SIMS in the 
process of detection and ranging of a source. The 
experimental data can be also used for simultaneous 
refinement of the constant R0, which characterizes the 
size of the emitting spot in the cloud at a given h, as 
well as for checking the correctness of estimating the 
observation angles θ. Equations (7) and (8) do not 
explicitly include the optical thickness of the layer τ∼. 
The only requirement is that it is sufficiently large for 
making feasible the description of propagation processes 
in a cloud layer by the transfer equation in the 
diffusion approximation (τ∼ > 15). 

In the process of calculation, it is important to 
know the ratio of Fi(ω) ≡ F(ω; θi) values  at different 
angles θ: 

 ξij(ω) = Fi(ω)/Fj(ω) = Hi(ω)/Hj(ω) .  (9) 

For the angles θi = θ1 and θj = θ2 we have 

 ξ12(ω) = (cos θ1/cos θ2) (u1/u2) ×  

  × exp [u2 $ u1 + i ωt0 (cos θ1 $ cos θ2)] , 

uk = [i ωt0 (1 + K) + (R0)$1]2 + (ωt0 sin θk)2 ,  (10) 

 k = 1, 2. 

This is the basic equation used for determination of 
parameters of the model from the data of the 
experiment and for elimination of the distorting 
influence of the path on the signal f(t). The parameters 
ξ(ω) are determined in the process of detection and 
ranging of a source with a multiposition SIMS from the 
signals recorded by different spaceships. They can be 
calculated directly as the ratio of the spectra F1(ω) and 
F2(ω). However, to find ξ(ω), it is more convenient to 
apply the processor based on the fast transversal filter 
(FTF), which gives more accurate and reliable results. 
When the signals fi(t) and fj(t) come to the FTF as 
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input and reference signals, the FTF transfer function, 
as FTF operates in the steady-state mode, is well 
approximated by the ratio Hi(ω)/Hj(ω). The operating 
principle and characteristics of such a processor are 
described in Refs. 15 and 16. 

Let us consider the case of small = = (ω t20 sin θ)2, 
assuming = ∼< 1. First, it is convenient to approximate 
Eq. (10) for small = as ξ(ω)/ξ(0) = 1 + l 1(ω) $ 
$ il 2(ω). Here 

 M1(ω) = [(ω t0)2/2] w1(ω) (sin2
 θ2 $ sin2

 θ1) ; (11) 

 M2(ω) = [(ω t0)2/2] w2 (ω) (sin2 θ2 $ sin2 θ1) +  

  + ω t0 (cos θ2 $ cos θ1) ; (12) 

 w1(ω) = {[ω t0 (1 + K)]2 [(R0)$1 $ 1] +  

+ [1 + (R0)$1] (R0)$2} {[ω t0 (1 + K)]2 + (R0)$2]}$1
 , (13) 

w2(ω) = ω t0 (1 + K){(R0)$1
 + (R0)$2

 + [(ωt0)2
 (1 + K)]}. 

 (14) 

The values of l 1(ω) and l 2(ω), as well as of θ1 and 
θ2, are thought known from the experiment 
(experimental data on detection and ranging of a source 
and determination of the angles θ1 and θ2 can be 
processed, for example, by the technique from Ref. 17). 
At (ωt0)2 << 1 we can calculate t0 from Eq. (11) and 
R0 from Eq. (12). Then it is easy to find K with 
(ωt)2 ≈ 1/2. The estimates obtained from Eqs. (11) 
and (12) are then checked using Eq. (10). 

With K = 0.73(H/h) and t0 = h/c known, we 
calculate H and h. Upon determination of H and h and 
refinement (if necessary) of R0, the model of the path 

given by Eqs. (7) and (8) becomes fully determined, and 
the signal f(t) is reconstructed. 

5. Reconstruction of the initial shape f(t) of the 
signal emitted by a source using the above-described 
scheme of deconvolution of equations (2) with the 
output data of the system of detection and ranging 
eliminates the perturbation effect of the propagation 
path on the SIMS functioning conditions and enhances 
the stability of system operation under natural 
conditions at varying meteorological situation. 

The data obtained in deconvolution of Eqs. (2) 
can be used to suppress noise components of the 

recorded signals and to correct the values of the angles 
θi, i = 1, ..., N, determined in the process of detection 
and ranging. 
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