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We present the method developed for analytical approximation of aerosol scattering phase 

functions by using natural characteristics of aerosol microstructure (indices of refraction and disperse 
composition of aerosol) as the approximation parameters. Errors of such an approximation are shown to 
be within the limits of the errors of other methods available for measurements of the scattering phase 
functions. A nomogram for determining the lidar ratio from data on the aerosol refractive indices and 
disperse composition is presented. Possibilities of estimating these indices from the data on the origin and 
characteristics of air masses in the regions of lidar sensing are considered. The possibilities of solving the 
inverse problem based on reconstructed values of the aerosol microstructure parameters by use of inverse 
transformation method for parametric approximation of the experimental phase functions are investigated. 

 

In solving problems on aerospace monitoring of 
the ground and ocean surface, as well as in the studies 
of directional atmospheric radiation, light regime of the 
scattered illumination of the Earth, the difficulties 
usually arise caused by the absence of adequate data on 
the aerosol scattering phase functions as referred to the 
whole depth of the atmosphere. G. Zimmerman, 
M. Shenemark et al, in their papers1,2 devoted to the 
sounding of the Earth atmosphere from space, consider 
the possibility of using the aerosol scattering phase 
functions obtained from the data on the sky brightness 
measured at the solar almucantar.3 The correctness of 
using such scattering phase functions is doubtless. But 
now there are only little data obtained by this 
technique3 available in literature. 

At different time, a number of relationships were 
proposed in literature that approximate the aerosol 
scattering phase function γa(θ) (formulas proposed by 
E. Shenberg, V.G. Fesenkov, V.A. Krag, G.S. Isaev, 
G.I. Gorchakov and other). Recently the three-
parameter superposition of the Henyey$Greenstein 
functions has been often used (especially abroad) for 
these purposes: 

γ(θ) = ∑
i=1

2

Ki(1 $ a2
i)/(1 + a2

i $ 2aicosθ)3/2, 

where ai and K2 = 1 $ K1 are the parameters. 
Reynolds and McCormic4 proposed a two-

parameter formula for approximation of the strongly 
forward-peaked scattering phase functions 

γ(θ) = 
4α(1 $ a2)2α

(1 + a2 $ 2acosθ)α+1[(1 + a)2α $ (1 $ a)2α]
 , 

where ⏐α⏐ < 1; α > $0.5. This formula is reduced to 
the Henyey-Greenstein formula at α = 0.5. The Henyey-
Greenstein formula does not provide approximation of 
the scattering phase functions close to the Rayleigh 
shape. 

Since the shape of the aerosol scattering phase 
function is principally determined by the size spectrum 
and the refractive index of the aerosol particles, it is 

natural to use these characteristics as the parameters for 
approximation of the scattering phase functions. 
However, we did not find any relationship between the 
parameters of the available approximations of the 

scattering phase functions (including the parameters a1, 
a2 and K in the Henyey-Greenstein formulas) and the 
aerosol microstructure characteristics. And we could not 
find any information about it in the literature. 

Of course, it is expedient to accept the refractive 
index n as one of the approximation parameters, and 
the index of disperse composition ν* can be taken as a 
characteristic of the particle size spectrum, at least for 
the particle size distribution close to the inverse degree 
law: 

dN/(d lg r) ∼ r$ν*. 

Really, the index ν* unambiguously determines the 
shape of the aerosol scattering phase function at the 
constant refractive index n. But direct determining of 
the index ν* by means of counting the number of 
particles of different size is technically very difficult. 
Therefore, it is not casual that there is only little data 
of that type available in the literature. 

At the same time, there are some papers 
containing large bulk of data on the indices of the 
spectral selectivity of aerosol extinction ωa (Angstrom 
index) assessed from the measurement data on the 
spectral aerosol optical thickness τa(λ) or from the data 
of long-path measurements of the aerosol extinction 
coefficient βaex(λ) (see references in Ref.5). The 
Angstrom index ωa in the cases with the particle size-
distributions close to the inverse-degree law and quite 

wide particle size spectrum (0.025 ≤ r ≤ 25 μm) 
correlates with the index of disperse composition ν* by 

the relationship ωa = ν* $ 2. 
On this basis, we used the Angstrom index as the 

second natural parameter (the index of disperse 
composition) for the approximation of scattering phase 
functions. 

Such a parameterization was presented for the first 
time in Ref. 5. This paper continues this study. 
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Parametric approximation of the aerosol 
scattering phase functions 

 
One can easily see that in relating the Rayleigh 

scattering phase function γm(θ) to the scattering angle 
θ in a comparatively wide angular range one obtains 
the curve γm(θ)/θ which is similar to a part of the 
aerosol scattering phase function. Convolution of the 
obtained curve with a model scattering phase functions 
γa(θ) of a polydisperse ensemble different asymmetry is 
reached by raising the denominator (the angle θ) to a 
power s. The greater is the exponent s, the steeper is 
the curve γm(θ)/θs. Normally an additional factor 
(1 + tsinKθ) is introduced into the exponent, so that 
such curves have minimum like the model scattering 
phase functions (usually near 110$120°). Let us denote 

the obtained function as ∼γ(θ): 

∼γ(θ) = γì(θ)θ$s(1+t sin Kθ). 

Two disadvantages of such an approximation can 

easily be seen. First, the function ∼γ(θ) → ∞, at θ → 0, 
that is unrealistic. In this connection, one should 
restrict the applicability of the approximation function 
∼γ(θ) to some minimum scattering angle θmin. Second, it 

occurs in all cases at θ = 1 that the function ∼γ(1) is 
equal to the Rayleigh scattering phase function γm(1). 
However this never occurs in natural and model 
scattering phase functions. This disatvantage is removed 
by replacing the angle θ in the denominator of the 

function ∼γ(θ) by an angle θ′ = θ(1 + ε). The correction 
ε is assessed from the scattering angle θ0 at which the 

functions ∼γ(θ0) and ∼γm(θ0) are equal to each other. In 
this case 

 θ0(1 + ε) = 1 .  (1) 

As a result, we obtain the following formula for 

the function ∼γ(θ): 

 ∼γ(θ) = γì(θ)[θ(1 + ε)]$s(1+t sin Kθ).  (2) 

At first,5 to establish the statistical relationships 
among the parameters s, t, K, ε and the model indices n 
and ωa one used the data of model calculations of the 
scattering phase functions γa(θ) obtained by E. Bari, 
B. Brown, K. Bullrich, K.S. Shifrin and T.P. Toropova. 
When preparing this paper, we have performed more 
detailed calculations, by the specrosonal method, of the 
aerosol scattering phase functions γa(θ), the scattering 
coefficients βas, the extinction coefficients βaex, and the 
Angstrom indices ωa for the refractive indices of the 
particulate matter of n = 1.34, 1.43, 1.50 and 1.53, and 

absorption indices κ = 0, 0.005 and 0.05, indices of 
disperse composition ν* = 2.0, 2.5, 3, 4 and 5, and the 
wavelengths λ = 400, 800 and 1600 nm in the particle size 
range r from 0.025 to 25 μm and four types of the 
particle size-distribution functions. 

Using thus obtained array of aerosol 
characteristics, we picked up the following regression 
relationships for the characteristics s, t, ε and K: 

 s = (6 $ ωa)/[10.2(n $ 1)] ;  (3) 

 t = (0.72 + s)(n2 $ 1.5) ;  (4) 

 ε = (s $ 0.512 $ 0.15ωa)/3 ;  (5) 

 K =  

0.865 at  θ ≤ 120°,
0.96
n

 + ( )3 ω0 + sin2 θ $1 at  θ > 120°.  

As is seen from the relationships (2)$(5) the 

function ∼γ(θ) is in fact determined only by two natural 
parameters n and ωa, and the scattering angle θ. The 
values of s, t, and K are intermediate parameters used 
only for reduction of Eq. (2). The problem of natural 
parameterization of the aerosol scattering phase 
functions is formalized by formulas (1)$(5). 

One should pay attention to one interesting 
peculiarity of the aerosol light scattering. Whith the 
increasing index of disperse composition up to ν* = 6 
the Angstrom index ωa becomes equal to the Angstrom 
index of Rayleigh scattering ωm = 4. However, judging 
from the calculations and Eq. (3), the polydisperse 
scattering phase function of the system of such particles 
remains noticeably asymmetric because of the effect of 
coarse particles contained in such a system, although 
their amount is not significant. 

As was mentioned above, Eq. (2) can be used for 
approximation of the aerosol scattering phase functions 
γa(θ) only starting from some minimum scattering angle 
θmin. The applicability of this formula to size spectra 
strongly different from the inverse power law is  also  
restricted to some maximum angles θmax. 

Let us accept the condition that the limiting errors 
of approximation should not exceed the limiting errors 
in experimental measurements of the aerosol scattering 
phase functions within the applicability limits 
θmin÷θmax as a criterion for determination of the 
angular boundaries for the applicability of Eq. (2). 

As was shown in Ref. 6, the limiting errors in 
assessing the aerosol scattering phase functions from the 
sky brightness in solar almucantar are about ±30%. The 
rms errors in nephelometric measurements of the 
scattering phase functions are about 10%.7,8 Therefore, 
one can take the value δγa = ±30% as the limiting error. 
Thus, the scattering angles θmin and θmax, within which 
the errors of approximation do not exceed ±30%, are 
accepted as the angular boundaries of the applicability 
of Eq. (2). 

The errors from using the Eq. (2) were determined 
by comparison of the obtained approximations with the 
data of exact model calculations of the scattering phase 
functions of a polydisperse ensemble with the inverse-
power particle size-distribution. The absorption of 
radiation by particles was not taken into account. The 

results of calculations are shown in Table 1. 
 



 

 
 

 
Table 1. The errors δγ

a
, % in calculating the aerosol scattering phase functions γ

a
(θ) by Eq. (2). 

 

  Refractive index n   

θ° ω
a
 

 

1.34 
 

1.43 
 

1.50 
 

1.53 δ
$

γ
a
, %

 

δγ
a
, %

  0.546 1.008 1.983 0.541 1.006 1.982 0.537 1.005 1.981 0.533 0.983 1.98 $ $ 
 

10 γ
a
 

δγ 

15.5 
25.5 

14.6 
17.6 

9.98 
23.9 

12.9 
12.5 

12.1 
6.1 

8.35 
12.8 

11.6 
5.1 

10.7 
1.2 

7.36 
9.5 

11.2 
2.2 

10.2 
0.4 

6.99 
9.0 

$ 
10.5 

$ 
13.4 

 

15 γ
a
 

δγ 
9.57 
7.5 

9.71 
$1.1 

7.69 
0.9 

8.30 
7.3 

8.44 
$2.4 

6.66 
$0.8 

7.57 
7.0 

7.62 
$1.8 

6.01 
$0.2 

7.31 
7.1 

7.31 
$0.9 

5.76 
0.5 

$ 
1.9 

$ 
4.3 

 

20 γ
a
 

δγ 
6.42 
$1.0 

6.02 
2.8 

5.90 
$7.5 

5.89 
3.3 

6.18 
$5.7 

5.31 
$5.6 

5.48 
6.8 

5.71 
$2.3 

4.92 
$3.5 

5.32 
$3.2 

5.54 
$0.9 

4.77 
$2.5 

$ 
$1.6

$ 
4.7 

 

30 γ
a
 

δγ 
3.17 
$6.7 

3.46 
$11.0 

3.44 
$9.6 

3.22 
10.0 

3.47 
$5.7 

3.37 
$6.2 

3.16 
5.4 

3.40 
$1.5 

3.29 
$3.9 

3.11 
8.3 

3.35 
0.6 

3.25 
$2.8 

$ 
$1.9

$ 
7.2 

 

40 γ
a
 

δγ 
1.63 
$5.0 

1.83 
$6.7 

2.08 
$7.3 

1.81 
0.3 

2.01 
$3.2 

2.18 
$4.6 

1.87 
4.9 

2.07 
0.3 

2.22 
$2.9 

1.88 
7.1 

2.09 
1.2 

2.22 
$1.9 

$ 
$1.5

$ 
4.9 

 

60 γ
a
 

δγ 
0.494 
1.1 

0.604 
0.2 

0.851 
$3.0 

0.632 
$13.6 

0.740 
$0.7 

0.944 
0 

0.724 
$3.0 

0.828 
$1.3 

1.01 
0.3 

0.759 
$3.5 

0.862 
$2.4 

1.03 
0.6 

$ 
$2.1

$ 
4.7 

 

80 γ
a
 

δγ 
0.187 
6.6 

0.247 
5.6 

0.409 
1.5 

0.266 
$5.6 

0.324 
$1.0 

0.468 
3.1 

0.325 
$11.9

0.382 
$5.3 

0.511 
2.7 

0.349 
$14.0 

0.406 
$8.1 

0.529 
2.0 

$ 
$2.0

$ 
7.3 

 

100 γ
a
 

δγ 
0.102 
8.5 

0.140 
9.7 

0.261 
5.6 

0.147 
$5.5 

0.186 
1.5 

0.306 
5.1 

0.174 
$8.8 

0.219 
$2.4 

0.334 
5.1 

0.189 
$12.0 

0.236 
$6.8 

0.349 
3.5 

$ 
0.3 

$ 
7.2 

 

120 γ
a
 

δγ 
0.0896 
$2.5 

0.119 
4.7 

0.244 
$0.7 

0.110 
$0.9 

0.148 
4.1 

0.271 
5.1 

0.133 
$6.0 

0.174 
0.7 

0.292 
6.9 

0.143 
$8.2 

0.186 
$3.1 

0.301 
6.8 

$ 
0.7 

$ 
5.0 

 

140 γ
a
 

δγ 
0.151 
$22.7 

0.155 
$5.6 

0.273 
$4.2 

0.139 
6.0 

0.174 
2.4 

0.299 
1.3 

0.159 
1.9 

0.198 
$1.4 

0.318 
2.3 

0.169 
$1.4 

0.209 
$5.1 

0.326 
1.9 

$ 
$2.1

$ 
7.8 

 

150 γ
a
 

δγ 
0.172 
$15.3 

0.177 
$6.3 

0.245 
$5.7 

0.230 
$0.2 

0.229 
$10.1

0.330 
$1.8 

0.221 
3.9 

0.246 
$8.8 

0.349 
$0.9 

0.224 
$3.0 

0.253 
$10.0 

0.356 
$1.1 

$ 
$4.9

$ 
7.8 

 

180 γ
a
 

δγ 
0.327 
$2.1 

0.260 
1.1 

0.340 
$0.4 

0.544 
$0.8 

0.361 
3.2 

0.390 
6.6 

0.623 
5.3 

0.495 
$16.6

0.455 
$2.8 

0.752 
$8.6 

0.592 
$28.3 

0.491 
$9.0 

$ 
$4.2

$ 
11.2 

 
As follows from this Table, the values θmin = 10° 

and θmax = 180° can be accepted as the angular 
boundaries of applicability of Eq. (2), because the 

errors, in this case, do not exceed ±30%. The mean 
$$$δγa 

and rms σγa errors in calculating the scattering phase 
functions γa(θ) by Eq. (2) in the angular range 10 to 

180° are the following: 
$$$δγa == $0,7%; and σγa = 7,3%. 

But the actual particle size-spectra at optical 
sounding of the atmosphere are usually unknown, and, 
in general case, can significantly differ from the 
inverse-power ones. Obviously, the question arises on 
the applicability of Eq. (2) for calculating the 
scattering phase functions using the data on the indices 
n and ωa at different particle size-distribution 
functions. To answer this question, we have calculated 
the spectral scattering coefficients βas, the Angstrom 
indices ωa, and the scattering phase functions γa(θ) of 
polydispersions for four aerosol models with different 
particle size-distributions f*(r) = dN/dlgr: 

I. Inverse-power distribution 

(ν* = 3; 0.025 ≤ r ≤ 25 ì*ì) 

f*(r) =  

AI 

rν*
 . 

II. Weighted-mean distribution9:  

(r0 = 0.03 μm, $n = 2.87, ~n = $n $ 0.1r ; where r is in μm) 

f*(r) =  

AII
 

r
~
ν
0 + ⏐r $ r0⏐

~
ν
 . 

III. Lognormal distribution: 
(r0 = 0.05 μm; σ = 1.095) 

f*(r) = AIII exp 
⎣
⎢
⎡

⎦
⎥
⎤$ 

ln2(r/r0)

2σ2  . 

IV. Bimodal distribution (superposition of two 
lognormal distributions r01 = 0.072 μm, and 
r02 = 3.26 μm, σ = 0.5) 

 f*Σ(r) = ∑
i=1

2

 
 
Aiexp ⎣

⎡
⎦
⎤$ 

ln2(r/r0i)
2σ2  . 

Calculations of the optical characteristics were 
carried out for each model of the size-spectrum by the 
spectrozonal method5 for the refractive index values 
n = 1.43 and 1.5 in three wavelength ranges of λ = 400, 
800 and 1600 nm, in the particle size range from 0.025 
to 25 μm. All values of the distribution function f*(r) 
were normalized assuming the condition that the 
scattering coefficient βas = 0.127 km-1 at λ = 800 nm 
(according to Elterman). The calculated values of the 
distribution function f*(r) for the models I$IV are 
shown in Fig. 1. 



654   Atmos. Oceanic Opt.  /August  2000/  Vol. 12,  No. 8 V.A. Smerkalov and G.F. Tulinov 
 

 

 
 

Fig. 1.  Models of the aerosol particle size distribution. 
 

The results of calculation of the Angstrom indices 
ωa and the aerosol scattering phase functions γa(θ) for 
each model are shown in Table 2. The rms errors δγa, 

mean 
$δγa and rms σγa errors in determining the 

scattering phase functions γa(θ) by Eq. (2) for each 
model are also shown in this Table. 

It is seen from Table 2 that the mean and rms 
errors in calculating the scattering phase functions by 
Eq. (2) for the weighted-mean particle size distribution 
(model II) 

$δII γa = $ 2.9%, σII γa = 7.5% 

are practically the same as for the inverse-power law 
distribution (model I). The applicability limits of 
Eq. (2) from 10 to 180° also do not change. The upper 
boundary of the angles of applicability for the 
lognormal distribution (model III) decreases to 
θmax = 150°. The errors in calculating slightly increase 

(in the limits of the scattering angle θ = 10-150° $δ
III γa = $5.3%; σIII γa = 15.5%). The angles of 
applicability for the pronounced bimodal distribution 
(model IV) are reduced to the values of 20$150°. The 
errors in calculating the scattering phase functions 
γa(θ) within these limits are: 

$δIV γa = 9.5%, σIV γa = 14.7%. 

The data presented evidence of the fact that in all 
cases of calculating the scattering phase functions γa(θ) 
by Eq. (2) in the angular range 20 to 150° the accuracy 
obtained (⏐δγ⏐ ≤ 30%) is quite acceptable. As it 
follows from the available data,5,9 in the majority of 
cases the particle size-distribution functions are grouped 
about certain (weighted-mean) function, the shape of 
which is more close to the inverse-power than to the 
lognormal distribution function. Hence, one can expect 
the results obtained by Eq. (2) to be more correct than 
for the models III$IV. 

The absorption of radiation by aerosol is 
determined by the absorption coefficient κ of the 
complex refractive index m = n $ κi. From the recent 
data,10,11 the absorption index κ of the "dry matter" of 
natural aerosol in the visible wavelength range in most 
cases is not beyond the limits 0.005$0.007. The 
absorption coefficient significantly decreases at the 
presence of water vapor in the atmosphere because of 
moistening the aerosol particles. Actual values of the 
absorption coefficient of natural aerosol measured in 

situ8 do not exceed κ = 0.002. 
 
Table 2. The errors δγ

a
, % in calculating the aerosol scattering phase functions γ

a
(θ) by Eq. (2) for I$IV models of the particle 

size-distribution (λ = 0.8 μm). 
 

    Scattering angle θ°   

Model n ω
a
 γ, (σ, %) 10 20 40 60 90 120 150 180 δ

$
γ
a
, % 

 

δγ
a
, %

 
I 

 

1.43 
 

1.006 γ 
δ 

12.1 
6.1 

6.18 
$5.7 

2.01 
$3.2 

0.740 
$0.7 

0.236 
$0.2 

0.148 
4.1 

0.229 
$10.1 

0.361 
3.2 

 
$2.6 

 
6.9 

 
 

1.50 
 

1.005 γ 
δ 

10.7 
1.2 

5.71 
$2.3 

2.07 
0.3 

0.828 
$1.3 

0.280 
$4.9 

0.174 
0.7 

0.246 
$8.8 

0.495 
$16.6 

  

 
II 

 

1.43 
 

1.234 γ 
δ 

11.5 
4.6 

6.04 
$6.1 

2.04 
$2.2 

0.786 
0.2 

0.267 
0 

0.178 
1.4 

0.252 
$10.5 

0.349 
$3.4 

 
$2.9 

 
7.5 

 
 

1.50 
 

1.247 γ 
δ 

10.1 
0.2 

5.56 
$3.1 

2.10 
0.5 

0.872 
$0.2 

0.312 
$3.7 

0.205 
$0.2 

0.275 
$10.8 

0.486 
$19.4 

  

 
III 

 

1.43 
 

0.207 γ 
δ 

15.2 
1.4 

6.18 
$0.9 

1.72 
$2.6 

0.578 
$7.5 

0.174 
$19.5 

0.099 
$17.8 

0.230 
6.2 

0.430 
226.8 

 
$5.3 

 
15.5 

 
 

1.50 
 

0.160 γ 
δ 

13.9 
$5.7 

5.75 
3.1 

1.75 
3.4 

0.665 
$10.3 

0.216 
$27.7 

0.119 
$23.8 

0.240 
27.1 

0.707 
243.9 

  

 
IV 

 

1.43 
 

1.127 γ 
δ 

6.77 
83.1 

4.42 
30.0 

2.07 
$3.8 

0.825 
$7.5 

0.262 
$3.8 

0.158 
6.2 

0.256 
$15.8 

0.682 
$46.7 

 
9.5 

 
14.7 

 
 

1.50 
 

1.230 γ 
δ 

6.34 
60.3 

4.31 
25.4 

2.14 
$1.5 

0.914 
$5.2 

0.304 
$2.0 

0.181 
11.9 

0.204 
19.6 

0513 
$23.2 

  



 

 
 

Table 3 shows the Angstrom indices ωa and the 
scattering phase functions γa(θ) that we calculated by 
the spectrozonal method assuming the values of the 
complex refractive index m = 1.43$0.005i and 
m = 1.50$0.005i (the value of the index κ = 0.002 is 
absent in the Tables of spectrozonal functions) for the 
inverse-power particle size-distribution. The errors δγa 
in calculating these scattering phase functions γa(θ) by 
Eq. (2) are also shown in the Table. 

As is seen from Table 3, the boundaries of 
applicability of Eq. (2) under these conditions are the 
same (10$180°) as in the case with pure scattering, and 
the rms error increases up to 11.3%. under real 
conditions, at the absorption coefficient κ ≤ 0.002, the 
effect of aerosol absorption is weaker. 

One can conclude, on the basis of the results 
presented, that the scattering phase functions of natural 
aerosol that does not contain strongly absorbing and 
well pronounced specific fractions can be calculated by 
Eq. (2) using the data on the indices n and ωa. As a 
rule, the errors in calculating will not exceed the 
measurement errors in the scattering phase functions 
(⏐δγa⏐ ≤ 30%). 

 

Natural parameterization  
of the lidar ratio 

 
When lidar investigations of the Earth atmosphere 

from space has started, the problems have arisen in the 
interpretation of the recorded lidar returns. 
Determination of the so called "lidar ratio" is one of 
these problems. 

The lidar return N(h) is related to the 
atmospheric light scattering characteristics by the laser 
sounding equation 

 N(h) = KT2(h)απ(h)/(Δh)2,  (6) 

where K is the lidar calibration constant, Δh is the 
distance from the atmospheric volume sounded, or the 
underlying surface, to the lidar, απ(h) is the volume 
backscattering coefficient, T(h) is the transmission of 
the atmosphere along the sounding path. 

In their turn, the coefficients απ(h) and T(h) can 
be represented in the form 

 απ(h) = gπ(h)βex(h);  (7) 

 

 T(h) = exp

⎣
⎢
⎡

⎦
⎥
⎤

$ ⌡⌠
Δh

 

βex(h)dh ,  (8) 

where gπ(h) is the lidar ration, and βex(h) is the 
volume extinction coefficient. 

If the ratio between the coefficient απ(h) and the 
βex(h), i.e., the lidar ratio gπ(h), is known, the 
problem should be reduced to solving the integral 
equation (6) with only one unknown parameter, βex(h). 
A number of methods have been proposed to date for 
numerical and analytical solution of such of equations 
(see, for example, Ref. 12). All these methods assume 
that the lidar ratio gπ(h) is known. In particular, Rocar 
accepted gπ = 0.038, Chesterman and Styles took 
gπ = 0.040, Foitzik took it to be 0.032, Gershun took 
the value of 0.050 for clear air and 0.029 for a turbid 
air. Russel et al accepted gaπ = 0.0132 for aerosol. The 
lidar ratio gaπ = 0.035 characteristic of aerosol in the 
near-ground layer was taken in Ref. 13. 

As is seen, when solving Eq. (6), different authors 
took the values of the lidar ratio different by 2$3 times 
and more. Our investigations showed that the value gaπ 
can vary, depending on the atmospheric optical 
conditions, within the limits from 0.008 to 0.065, i.e., 
up to 8 times. At the same time, it follows from 
Eqs. (6)$(8) that the solutions of the laser sounding 
equation are critical to the choice of the lidar ratio 
value, hence, to gaπ(h). 

In this connection, some Russian and foreign 
scientists (R.T. Kovalev, V.I. Khalturin, 
O.D. Barteneva, G.I. Gorchakov, R.V. Fenn, 
D.D. Klett etc.) proposed different empirical formulas 
for determining the lidar ratio from the extinction 
coefficient βex, optical thickness τ, meteorological 
visual range Sm and so on. 

The existence of many different dependences 
which do not agree with each other is explained by the 
fact that, in fact, there is no unambiguous dependence 
of the lidar ratio on the extinction βex, τ and Sm, 
although certain correlation is observed. 

As was mentioned above, the lidar ratio gaπ, as 
well as the backscattering phase function γaπ (in the 
absence of absorption γaπ = 4πgaπ), is determined not 
only by the characteristics of extinction, but by the 
aerosol microstructure, i.e., should be parameterized by 
the indices n and ωa. 

 

Table 3. The errors δγ
a
 in calculating the aerosol scattering phase functions γ

a
(θ) at the presence of aerosol absorption of 

radiation (i = 0.005, model I). 

 
   Scattering angle, degrees   

m ω
aex γ, (δ, %) 10 20 40 60 90 120 150 180 δ

$
γ
a
, % 

 

δγ
a
, % 

 

1.43$0.005i 
 

0.992 
γ
a
(θ) 

δγ
a
 

10.76 
19.9 

5.22 
12.2 

2.08 
$6.5 

0.815 
$10.1 

0.268 
$12.7 

0.175 
$12.6 

0.241 
$14.8 

0.315 
18.8 

 
$0.4 

 
11.3 

 

1.50$0.005i 
 

0.994 
γ
a
(θ) 

δγ
a
 

10.78 
0.9 

5.59 
0 

2.03 
2.1 

0.826 
$1.5 

0.284 
14.7 

0.182 
$4.7 

0.246 
$9.4 

0.420 
$1.5 

  

 



 

 
 

To provide for a possibility of operatively  
determining the lidar ratio gaπ from the data on indices 
n and ωa we have calculated the lidar ratio values gaπ 
on a sufficiently detailed grid of the refractive and 
Angstrom indices. The calculations were performed by 
the spectrozonal method assuming the inverse-power 
size-distribution of particles within the Mie parameter, 
ρ = 2πr/λ, range from 0.1 to 409 without the account 
of radiation absorption by aerosol. The calculated 
results are shown in Fig. 2 as a nomogram. 

 

 
 
Fig. 2. The lidar ratio g

aπ
 as a function of the Angstrom index 

ω
a
 at the values of the refractive index n = 1.25 (1), 1.33 (2), 

1.43 (3), 1.50 (4), and 1.53 (5). 

 
As in the case with the approximation of 

scattering phase functions, there arises a question on 
the applicability of such a nomogram to interpretation 
of the results of sounding of atmospheric aerosol from 
space, when the particle size-distribution and the 
absorption of radiation by aerosol are unknown, and, in 
general case, can significantly differ from the 
conditions assumed when constructing the nomogram. 

Partially the answers to these questions can be 
found in the previous section where tables 2 and 3 are 
analyzed. Besides, the lidar ratio values gaπ were 
calculated for aerosol with the complex refractive 
indices m = 1.43$0.005i; 1.50$0.005i and 1.53$0.005i 
for the models I and II of the particle size-distribution. 
The calculated results are shown in Table 4. The lidar 
ratio values for pure scattering (without absorption) 
are also shown in this Table. 

 
 

Table 4. The effect of aerosol absorption on the lidar ratio 
g
as

 at i = 0 and g
aex

 at i = 0.005. 

 

Parameter Model of distribution 

 I II 

n 1.43 1.50 1.53 1.43 1.50 1.53 

g
as
 104 287 394 471 287 387 457 

g
aex 104 251 334 401 252 351 411 

δg, % $12.7 $15.2 $14.9 $9.2 $9.3 $10.1

Analysis of the data given in Tables 2$4 shows 
that the lidar ratios gaex at the particle size-
distributions close to the inverse-power and weighted-
mean ones, at the absorption characterized by the index 
κ = 0.005 differ from that shown in the nomogram, gas, 
by no more than 20%. The difference between the lidar 
ratios gaex and gas at the absorption index κ  = 0.002 
characteristic of natural aerosol are no greater than 8-
10%. Significant deviations of gaex and gas from that 
shown in the nomogram can appear at the particle size-
distributions significantly different from the models I$
II. It is not excluded that such distributions can really 
occur, but according to available information5,9, they 
are very rare. 

 

Determination of the under-satellite  
values of the parameters n and ω

a
 

 

Obviously, it is impossible to operatively 
determine the values of the indices n and ωa from the 
data obtained at underflights by the routine processing 
the data of optical sounding of the atmosphere from 
space by traditional methods. The regression methods 
presented in the literature for determining the 
scattering phase functions and lidar ratios from the data 
on the meteorological visibility range along the 
sounding path from satellite, the extinction coefficient 
or the optical thickness of the atmosphere are little 
suitable under these conditions. 

The approach that was proposed in Ref. 5 to 
solving this problem is based on the following 
suppositions: 

a) the following meteorological and synoptical 
data can be more or less available in the regions of 
sounding from space: 

$ origin and type of air mass (marine, continental, 
arid, arctic, etc.); 

$ humidity, pressure, temperature; 
$ type and state of the underlying surface; 
$ synopticl conditions (cyclone, anticyclone, etc.); 
b) certain relation is known between the 

atmospheric conditions and the optical characteristics of 
the atmosphere, including the refractive index and the 
Angstrom index. 

According to the published data, aerosol of 
different origin is characterized by its own values of the 
indices n and ωa. The refined (in comparison with the 
data from Ref. 5, Table 4.4) characteristic values of the 
indices n and ωa of aerosol of different types are shown 
in Table 5. 

However, one should keep in mind that the 
relation between the type of air mass and the indices n 
and ωa is ambiguous. It strongly depends on the 
landscape and climatic conditions, humidity, synoptic 
conditions, the height of the boundary layer of the 
atmosphere, etc. In this connection, compilation of 
Tables similar to Table 5 and additionally taking into 
account the effect of the aforementioned factors seems 
to be very urgent. 
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Table 5. Characteristics values of the indices n and ω
a
 for 

aerosol of different types. 
 

Type of aerosol m = n $ κi ω
a
 

Arctic:   
winter 1.50 1.0 
summer 1.45 1.3 

Marine (far from land):   
north latitudes 1.52 $ 10$4 i 1.0 

midlatitudes 1.52 $ 10$4 i 0.6 

tropics 1.52 $ 10$4 i 0.3 

Marine (coastal):   

λ = 550 nm 1.5 $ 0,002 i 0.36 

λ = 1060 nm 1.47 $ 0.002 i 0.75 

Continental 1.525 $ 0.002 i 1.25 

Rural:   

λ = 550 nm 1.53 $ 0.006 i 1.44 

λ = 1060 nm 1.52 $ 0.014 i 1.34 

Urban:   

λ = 550 nm 1.48 $ 0.075 i 1.19 

λ = 1060 nm 1.47 $ 0.06 i 0.78 

Arid:   
summer $ fall 1.58 $ 0.008 i 0.60 

winter $ spring 1.50 $ 0.005 i 1.15 

Sahara dust 1.53 $ 0.003 i 0.60 

Stratospheric 1.43 $ 1.47 1.20 
Volcanic 1.50 $ 0.005 i 0.65 

 

Inversion of the aerosol  
scattering phase functions 

 

The aerosol microstructure characteristics are 
reconstructed in situ by the method of inverting the 
aerosol scattering phase functions without changing the 
aerosol structure. Nevertheless, the majority of data on 
the microstructure of atmospheric aerosol are obtained 
by contact methods. One of the reasons for this is 
difficulty and inconvenience of calculation procedures 
for inverting optical data into the aerosol 
microstructure parameters. 

The analytical approximation of the scattering 
phase functions in the form of Eqs. (2)$(4), where the 
characteristics of aerosol microstructure n and 
ω0 = ν* $ 2 are used as the parameters of 
approximation, allows one to obtain the explicit form 
of the relationships for determining the indices n and 
ωa by means of the inverse transformation. 

By substituting the measured values of the 
scattering phase function γa(θ) at two angles, θ1 and 

θ2, as well as the correction ε = θ$1
0  $ 1 to Eq.( 2), we 

obtain the system of two equations. Solving it relative 
to the intermediate values t and s, we obtain 

 t = (1 $ U)/(Usin Kθ1 $ sin Kθ2); 

 s = Pi/[ ](1 + tsin Kθi)ln(θi/θ0) ,  i = 1,2 , 

where 

 U = 

P2ln
 

θ1 

θ0

P1ln
 

θ2
 

θ0

;   Pi = ln
γì(θi)
γa(θi)

;   K = 0.865. 

The values of the indices, n and ωa, are determined 
by the obtained values t and s, using Eqs. (3) and (4) 

 n = [t/(0.72 + s]) + 1.5; (9) 

 ωa = 6.0 $ 10.2s(n $ 1).  (10) 

To determine the errors in reconstructing the 
indices n and ωa of the aerosol microstructure by 
Eqs. (9) and (10) we inverted 12 model scattering 
phase functions from Table 1. The values θ1 = 20° and 
θ2 = 120° were taken as the angles θ1 and θ2. The 
inversion results are shown in Table 6. As follows from 
Table 6, the mean and rms errors in reconstructing the 

refractive index of particles are: Δn
##

 = $0.001; and 
s(Dn) = 0.036. 

The Angstrom indices ωa are reconstructed with 

the errors Δωa

##
 = $0.008 and σ(Δωa) = 0.16. 

Undoubtedly, it is the idealized accuracy, because 
the polydisperse scattering phase functions calculated 
for exactly inverse-power size-distributions without 
taking into account the absorption and without random 
measurement errors were used in inverting. 

It was necessary to check the applicability of the 
proposed method to inversion of the experimentally 
measured scattering phase functions. In so doing we 
used the scattering phase functions obtained by 
statistical processing of the "universe" of nephelometric 
data on the aerosol scattering phase functions at the 
wavelength λ = 0.55 μm measured in Karadag (Crimea) 
and in Tomsk in 1975.8 

The scattering phase functions γa(θ) are 
represented in the form of the regression relationship: 

 γa(θ) = Ca(θ) βKa(α)$1
as  .  (11) 

Taking the values of the volume aerosol scattering 
coefficients βas to be 0.15, 0.20, and 0.30 km$1, we 
calculated, by Eq.(11), the values of the scattering phase 
functions γa(θ) at the angles θ1 = 20° and θ2 = 120° and 

the correction ε = θ$1
0  $ 1 for the conditions of Karadag 

and Tomsk. Resulting from the solution of the system of 
two equations, the intermediate values t and s were 
found, from which the values of the indices n and ωa 
were then determined by Eqs. (9) and (10) (see Table 7). 

It is seen from Table 7 that: 
$ the index ωa at Karadag is relatively small 

(0.34$0.38). This is an evidence of the fact that the 
microstructure of coastal aerosol is similar to that of 
marine aerosol that is characterized by small values of 
the index ωa; 

$ the refractive index decreases from n = 1.59 to 
1.41 as the aerosol scattering coefficient βas increases. 
This is indicative of the fact that the increase of βas in 
coastal area occurs mainly due to moistening of 
particles; 

$ the aerosol turbidity in Tomsk increases without 

a noticeable change of the nature of particles (n $∼ 1,4), 

but the relative number of coarse particles increases, 
and the index ωa decreases from 1.78 to 1.25. 



 

 
 

Table 6. Inverting the aerosol scattering phase functions. Model I.  i = 0. 
 

  Refractive index n 

  1.34 1.43 1.50 1.53 
 

 

ω
a
 

ε 
γ
a
(20°) 

γ
a
(120°) 

0.546 

0.258 
6.42 

0.0896 

1.008 

0.180 
6.02 

0.119 

1.983 

0.034 
5.90 

0.344 

0.541 

0.149 
5.89 

0.110 

1.006 

0.080 
6.18 

0.148 

1.982 

$0.047 
5.31 

0.271 

0.537 

0.092 
5.48 

0.133 

1.005 

0.026 
5.71 

0.174 

1.981 

$0.090 
4.92 

0.292 

0.533 

0.072 
5.32 

0.143 

0.983 

0.011 
5.54 

0.186 

1.980 

$0.104 
4.77 

0.301 

 

 

~

s  
~

t  
~

n  
Δn 
~

ω  
Δω 

1.583 

0.558 

1.335 
$0.005 
0.59 
0.044 

1.490 

0.500 

1.326 
$0.014 
1.05 
0.042 

1.251 

0.421 

1.315 
$0.025 
1.982 
$0.001 

1.232 

0.994 

1.429 
$0.001 
0.604 
0.063 

1.174 

0.978 

1.429 
$0.001 
0.86 

$0.146

0.964 

0.890 

1.422 
$0.008 
1.85 

$0.132

0.996 

1.427 

1.526 
0.026 
0.65 
0.113 

1.00 

1.249 

1.492 
$0.008 
0.98 

$0.015

0.802 

1.279 

1.514 
0.014 
1.80 

$0.181

0.960 

1.450 

1.534 
0.004 
0.77 
0.237 

0.942 

1.351 

1.516 
$0.014 
1.04 
0.057 

0.749 

1.429 

1.550 
0.020 
1.80 
$0.18 

 

Δn  = $ 0.001;  σ(Δn) = 0.036;  Δω a = $ 0.008;  σ(Δω
a
) = 0.16. 

 
Table 7. Examples of inverting the measured aerosol scattering phase functions. 

 

Parameters Region Fog14 

  Karadag8 Tomsk8 class 8 class 9 
 

 

β
as
 

γ
a
(20°) 

γ
a
(120°) 

ε0 

0.15 
6.27 
0.146 

$0.0017 

0.20 
6.7 

0.134 
0.031 

0.30 
7.36 
0.119 
0.077 

0.15 
5.51 
0.247 
$0.012 

0.20 
5.80 
0.221 

0 

0.30 
6.24 
0.190 
0.023 

1.75 
7.38 
0.114 
0.184 

3.50 
7.77 

0.0741 
0.246 

 

~

s  
~

t  
~

n  
~

ω
a
 

0.943 

1.729 

1.59 

0.34 

1.098 

1.347 

1.50 

0.36 

1.332 

0.935 

1.41 

0.38 

1.051 

0.773 

1.39 

1.78 

1.090 

0.822 

1.40 

1.53 

1.174 

0.812 

1.40 

1.25 

1.696 

0.382 

1.30 

0.81 

1.808 

0.480 

1.316 

0.53 

 

However, one should note that the values of 
indices n and ωa obtained in such a numerical 
experiment for the conditions of Karadag and Tomsk do 
not allow one to estimate their reality (the values n 
and ωa are not presented in Ref. 8). 

One can draw a more definite conclusion about 
the correspondence of the refractive index n to reality 
by inverting the scattering phase functions obtained in 
the near-ground layer.14  Two flat scattering phase 
functions of 8-th and 9-th class characteristic of the 
fogs with the mean meteorological visual range Sm = 2 
and 1 km, respectively, are presented in this paper. One 
can assume for the mentioned conditions that the 
scattering phase functions were formed exclusively by 
the fog particles (one can ignore the Rayleigh 
component), and the refractive index n should be 
practically equal to the refractive index of water 
n = 1.33. 

The values of t and s and indices n and ωa 
obtained from the numerical experiment on inverting 
the fog scattering phase functions are shown in Table 7. 
The indices n8 = 1.30 and n9 = 1.316 are very close to 
the refractive index of fog droplets n = 1.33. The 
decrease of the Angstrom index ωa from 0.81 to 0.53, as 
the meteorological range decreases, is an evidence of 
the relative increase in the number of coarse particles 
that is in a good agreement with the conclusions of the 
fog physics. 

However, one should note that the experimentally 
measured scattering phase functions8,14 were obtained 

by averaging a large bulk of data. So one can assume 
that they do not contain random errors of measurement. 
The problems of inverting the experimental scattering 
phase functions measured with an error by the proposed 
method should be studied. 

We have carried out model calculations of the 
indices n and ωa from the data on "measured" scattering 

phase functions at six scattering angles θ = 15, 20, 30, 
110, 120, and 130° at two wavelengths λ = 400 and 
800 nm. We obtained 3×3×2 pairs of equations and, 
hence, 18 pairs of the values ni and ωai. Supposing that 
the indices n and ωa do not significantly change in the 
limits of spectral measurements, the weighted-mean 

values 
$
n and ωa

##
 were determined by averaging the 

values ni and ωai. 
The total errors in reconstructing the indices n and 

ωa were σ(Δn) = 0.004 and σ(Δω) = 0.19 at the error 
in "measuring" the scattering phase functions 
σγ = 3.8%, at the scattering angles 15$30°, and 

σγ = 9.35% at θ = 110$130°. 
The model estimates show that the accuracy of 

reconstruction of the indices n and ωa by the proposed 
method is as good as that of the methods for 
experimentally measuring these characteristics. The 
method is also attractive because it allows one to 
promptly obtain the data on the characteristics of 
aerosol microstructure in situ, including the indices n 
and ωa in the atmospheric column from the data of 
optical measurements of the scattering phase functions. 
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At the same time, one should keep in mind that 
the aforementioned estimates of the capabilities of the 
proposed method in inverting the aerosol scattering 
phase functions are obtained from the data of model 
calculations at a number of simplifying assumptions 
(there is no significant absorption of radiation by 
particles, all particles are homogeneous, spherical and 
have the same refractive index, the particle size 
distribution is close to the inverse-power law and can 
be characterized by the index of the disperse 
composition ν* = ωa + 2, etc.). 

In this connection it seems to be very urgent to 
carry out further experiments on the studying 
capabilities and applicability of the proposed method. 
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