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The spectra of rotational-vibrational bands of main absorbing atmospheric molecules (H2O, CO2, 
and O3) are interpreted in terms of fractal analysis. The results demonstrate that these spectra possess 
non-trivial and rather individual multifractal characteristics. In particular, the spectrum of fractal 
dimensions is shown to be sensitive to molecular and isotopic content of a gas and to the type a 
rotational-vibrational absorption band. 

 

Introduction 
 

Optical spectra bring information about the 
structure and internal motion of a quantum system, and 
every spectral line characterizes certain conditions for 
this motion. The study of individual spectral lines and 
characteristic series forms the basis for methods of 
spectral analysis. 

At the same time, there is another approach to 
studying spectral properties of quantum systems œas a 
whole.B It is based on the methods of statistical 
analysis1,2 (see also reviews 3$5, Ref. 6, and references 
therein). The reason for this approach is the complex, 
pseudo-random character of the spectrum of a quantum 
chaotic system (QCS). The statistical approach treats 
spectral manifestations of the quantum chaos as a 
property of the group of system states or, in other 
words, as a collective behavior of the groups of 
quantum ensemble’s elements. Statistical criteria of the 
quantum chaos are represented in terms of distribution 
features of interlevel intervals. For regular quantum 
systems, distribution of interlevel intervals is 
Poissonian; at the same time, for QCS the Wigner 
distribution takes place. This leads, in particular, to 
small probability that one can find close levels in the 
QCS spectrum (the phenomenon of level repulsion). 

The salient features of the structure of complex 
systems often can be expressed in terms of fractal 
geometry. In the simplest case, the distribution 
geometry for elements of the studied set is characterized 

by the Hausdorff#Besicovich dimension7,8 which can 

be treated as an indicator of singularity α: the 
distribution density for elements of a set inside some 

subset of diameter δ is proportional to δα. It is evident 
that the more irregular is the distribution of elements 
in the set, the smaller is α. 

Application of methods of multifractal analysis is 
natural development of the idea to study fractal  
 

properties with a complex structure. A multifractal is a 
more complicated object as compared to an elementary 
fractal.8,9 It is a set of elementary fractals organized in 
a multifractal by distribution of singularities of a 
certain measure generated by a given physical 
parameter. As it was mentioned in Ref. 10, multifractal 
analysis can yield non-trivial results as applied not only 
to self-similar objects and even not obligatorily to 
fractals. 

In the case of a multifractal, the Hausdorff#

Besicovich dimension is generalized by Renyi’s 

dimension Dq, connected with œdensityB distribution of 
a certain physical parameter ρ(x), as a measure on a 
geometrical support. Note that the choice of this 
physical parameter is decisive, as it determines the 
choice of the measure of the set and, correspondingly, 
its fractal properties. 

An example of studying fractal properties of the 
spectrum of a quantum system is presented in Ref. 11, 
where fractal properties of the geometrical structure of 
arrangement of spectral series of the hydrogen atom are 
found. The used approach is based on selection of a test 
function whose Levy set (the set of self-similarity 
points) has the same distribution as the physical 
parameter described. However, this approach is 
restricted to the case of rather simple spectra and, 
besides, the Levy set brings information only about 
geometrical properties of the support for the 
distribution function of spectral lines. 

If collective characteristics of the set of spectral 
lines of a molecule are close to each other in a certain 
sense, their fractal analysis is of interest. Some 
vibrational$electronic and rotational$vibrational 
bands can be the subjects of such analysis. In this 
paper an attempt is made of multifractal analysis of 
rotational$vibrational absorption spectra of main 
atmospheric molecules: H2O, CO2, O3, and their 
isotopic species. 
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Formulation of the general approach to 
spectral analysis 

 

The set of spectral lines evidently leads to the 
measure distribution necessary for applying the 
multifractal analysis. For instance, the number of 
absorption lines of a certain intensity per unit 
frequency interval can be taken as a œmeasure densityB 
ρ(x). However, in our opinion, it is more natural to 
take the œabsorption densityB, i.e., total absorption per 
unit frequency normalized to the total absorption all 
over the frequency range, as the œmeasure densityB. 

In practice, fractal properties of the œabsorption 
densityB distribution on the set of N frequency 
intervals can be analyzed by the method of identical 
bins.12 Let us divide the support of the set into equal 
frequency intervals (bins) of size δ normalized so that 
δN = 1. Then let us determine the moments 

Gq(δ) = ∑
i = 1

N

 ρ i
q

 , 

where ρi is the absorption density in the ith bin, and 
summation is performed over all non-empty bins. Then, 
for not very small δ, we introduce the function 

τ(q) = log Gq(δ)/log δ , 

which is related to the generalized Renyi dimension Dq 
as 

τ(q) = Dq(q $ 1) . 

The singularity spectrum of the multifractal f(α) is 
related to the function τ(q) in the following way: 

f(α) = q 
dτ(q)
dq

 $ τ(q) , 

where 

α = 
dτ(q)
dq

 

. 

Let us illustrate this technique using as an 
example the test case permitting direct interpretation. 
Figure 1 shows the singularity spectrum for 500 
equidistant lines of the same intensity. Since ρi(δ) ∝ δ 
in this case, the singularity spectrum must be the δ-
function of unit amplitude at the point α = 1. 

 
 

Fig. 1. 

 

Fractal analysis of optical spectra 
 

Let us consider the salient features of the singularity 
spectrum of main atmospheric molecules: H2O, CO2, and 
O3. They are chosen because of the important role they 
play in the dynamics of atmospheric processes. For 
instance, atmospheric water vapor has the richest 
absorption spectrum in the visible and IR regions, carbon 
dioxide is one of the greenhouse gases, and the ozone 
layer protects the Earth from UV radiation. 

Figure 2 shows the singularity spectra for different 
H2O vibrational bands. One can see that the spectral 
functions of these bands differ significantly. It is 
interesting to analyze the influence of the isotopic 
composition of a gas on the singularity spectrum. 
Figure 3 shows the singularity spectra of the HDO 
molecule. One can see that the spectra of identical 
absorption bands but of different isotopic species differ 
markedly too. 

 

 
a 

 

 
b 

Fig. 2. Singularity spectrum for absorption density in the 
010$000 (a) and 020$000 (b) bands of the main water vapor 
isotopic specie. 

 

Let us consider the salient features of fractal 
spectra of the same absorption band for two CO2 
isotopic species (Fig. 4). Here, the differences in the 
singularity spectra are also seen. 
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Fig. 3. Singularity spectrum for the absorption density in the 
010$000 (a) and 020$000 (b) bands of the HDO isotopic specie. 
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Fig. 4. Singularity spectrum for the absorption density in the 
01101$00001 band of 12C16O2 (a) and 17O12C18O (b). 

 
= 
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Fig. 5. Singularity spectrum for the absorption density in the 
010$000 band of O3 (=) and 18O16O18O (b). 

 

 
 

Fig. 6. Singularity spectrum for the absorption density in the 
010$000 ozone absorption band divided into four equal 
frequency intervals. 
 

The optical spectrum of the main absorption band 
of ozone is characterized by the far greater number of 
rotational lines (more than 7000) as compared to the 
spectra of the molecules considered above. The fractal 
spectrum of ozone is shown in Fig. 5. Analysis of self-
similarity of the optical spectrum is also interesting.  
Figure 6 shows the fractal spectra of the main O3 band 
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divided into four parts. One can see that the singularity 
spectrum is most variable in the area of large α, but the 
fractal spectra of two pairs practically coincide. 

 

Conclusion 
 

In this paper, the absorption density, i.e., total 
absorption per unit frequency normalized to the total 
absorption all over the frequency range, is used as a 
basis for multifractal analysis of optical spectra of gas 
molecules. In terms of fractal analysis, the absorption 
density is described by the singularity spectrum 
characterizing the collective properties of its 
distribution at the frequency axis. 

The results of this work demonstrate that 
absorption spectra of rotational$vibrational bands of 
gas molecules possess non-trivial and rather specific 
multifractal characteristics. In particular, the singularity 
spectrum is shown to be sensitive to the molecular and 
isotopic composition of the gas under study and to the 
type of the rotational$vibrational absorption band. 
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