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Exponential series as an approach to radiation intensity integration over spectrum are most 
efficient in solution of the problems associated with radiative processes in the atmosphere as applied to 
derivation of equations for spectrally mean parameters. 

 

1. Statement of the problem 
 

Let us use the designation J(r, n; ω) for the 
spectral (at the frequency ω) intensity of radiation 
coming through the point r in the direction of the unit 
vector n. The parameter  

 F r n r n n( ) ( , ; )= ∫ J ω ωd d   (1) 

is called the radiative flux at the point r, and  

 div ( , ) ( , ) ( , ; )F r n r r n= − ∫∫4π ω η ω ω ω ωd d d i J   (2) 

enters into the equation of heat balance at the point r 
(more exactly, the corresponding elementary volume); 
the values η and i in Eq. (2) are the coefficients of 
emission and absorption. Of course, the situation is 
assumed stationary in the sense that there are no 
processes in the medium whose speed is comparable 
with the speed of light, and therefore the time t enters 
into the transfer equation only as a parameter. Then 
(keeping in mind, as usually, that the transfer equation 
deals with the rays of geometrical optics) nJ is 
interpreted as the Pointing vector, and Eq. (2) proves 
to be the Joule heat. 

We consider the popular situation for radiative 
problems1,2: the horizontally inhomogeneous plane 
molecular atmosphere in which the transfer equation 
has the following form: 

 cos
( , ; )

( , ) ( , ; ) ( , )θ
∂ θ ω

∂
ω θ ω η ω

J z

z
z J z z= − +i .  (3) 

Here z is the altitude above the Earth’s surface; θ is the 
angle between the vertical and the direction of ray 
propagation. Recall that η = Bi with the Planck 
function B(ω, Θ) in the case of local thermodynamic 
equilibrium (LTE) at the temperature Θ. Sometimes 
(high atmospheric layers,3 far wing of a water vapor 
rotational band4) b  should be multiplied by the factor 
μ(ω) responsible for deviation from LTE.  

The main computational problem is connected 
with the need, because of Eqs. (1) and (2), to 
integrate the solution (3) over frequency. Modern 
computers and the line-by-line procedure seemingly 

allow us to treat this problem as purely technical. 
However, some new, rather significant circumstances 
arise. The principal point is that the quantum 
calculation of i(ω) is accompanied by numerous 
approximations and the need to involve a huge 
number of empirical constants. At the same time, for 
Eq. (1) there is no need in thus detailed 
spectroscopic pattern, so we have to remove the 
œexcessB information (which is obtained in a rather 
intricate way) by applying an additional, also rather 
intricate, effort. Moreover, an abundance of spectral 
lines makes the radiative block of climate models and 
algorithms of geophysical applications of atmospheric 
optics so cumbersome that sometimes efficient 
functioning of such models and algorithms is quite 
questionable. That is why the approaches of the pre-
computer era again become popular; this is a sort of 

Renascence of ideas for calculation of dω (...)∫  in 

Eq. (1). 
One of the ideas is in application of exponential 

series, which leads for Eq. (3) (see Ref. 5) to the 
equations 

 
( ) ( ) ( )I z J z b I z, , ; , ,

;

θ θ ω ω θ

ω ω

ν ν

νω

ω

≡ =

= ′′ − ′

=′

′′

∑∫
1

1
Δω

Δω

d
  

(4)
 

 cos
( , )

( ; ) ( ) ( ; ).θ
∂ θ

∂

ν

ν ν ν

I z

z
s g z I z s g z= − + Ω   (5) 

Here bν and gν are the ordinates and abscissas of the 

quadrature formula; s(g, z) is the function inverse to 
g(s; z) (by the argument s; z is treated as a parameter): 

 

[ ]

g s z u z

z s

( ; ) ( ; )

( ; ) , ,

=

≤ ∈ ′ ′′

∫
1

Δω
ω ω

ω ω ω ω

d

i
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 u z
B z

z
( ; )

( , )

( )
ω

ω
=

Ω
;  (6) 
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dω ω

ω
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′
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∫ . 
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In the case of LTE violation, B in Eq. (6) should 
be replaced by Bμ; the dependence of b  on z is caused 

by Θ = Θ(z). 
Equation (4) shows that Eq. (5) is the equation 

for intensity already integrated over frequency. The 
procedure of transition from Eq. (3) to Eq. (5) is 
practically exact. Then let us follow up the sequential 
application of Eqs. (4) and (5) to calculation of 
Eq. (2). 

Here there are two points to be noted as applied 
to the program appealing to Eqs. (4)$(6). First, the 
procedure (6) of constructing s(g), as found, is reduced 
to a certain ordering of i(ω) by value. Second, with 
the proper choice of the quadrature function, the 
Eq. (4) includes only several terms in spite of 
thousands terms as in the case of direct integration 

dω (...)∫  in Eq. (4). 

In this context, let us also remind that Eq. (2) 
enters into the thermodynamic relation1,2 

 c
t

Gp ρ
∂Θ

∂
= − +div F   (7) 

for the temperature variation at a certain point. Here ρ 
is the air density; cp is the heat capacity at constant 
pressure; the term G includes other factors, different 
from the radiative flux, that change the temperature 
(for example, convection). As was already mentioned, 
it is just Eq. (7) that causes the parametric time 
dependence in Eq. (5). 

 

2. Solution 
 

The integral of Eq. (5) is 

I z C

z z s g z

s g z z

z

z s g z z

z

z

z

z

ν

θ

ν

θ

θ θ

θ

ν

ν

( , ) sec

sec ( ) ( ; )

sec ( ; )

sec ( ; )

= +

+ ′ ′ ′

− ′ ′

− ′′ ′′

∫

∫
∫ ′

e

d e

d

d

0

0

Ω

  

(8)

 

with the integration constants q and z0. The first term 
in Eq. (8) is the solution of the homogeneous equation 
corresponding to Eq. (5), while the second term is the 
solution of the inhomogeneous equation. 

The latter has the meaning of atmospheric 
emission or diffuse radiation. To calculate it, we should 
formally assume q = 0. Usually, the diffuse radiation is 
separated into downward I↓ (z0 = ∞; π/2 < θ < π), and 
upward I↑ (z0 = 0; 0 ≤ θ < π/2) going components 
with Iν(z, π/2) = 0, what immediately follows from 

Eq. (8). So, 

 I z z s g z

z

s g z z

z

z

ν ν

θ

θ

ν

↓

∞ ′′ ′′

= − ′ ′∫

′

∫
sec ( ) ( ; ) ;

sec ( ; )

d e

d

Ω   (9) 

 I z z s g z

z s g z z

z

z

ν ν

θ

θ

ν

↑
− ′′ ′′

= ′ ′∫ ′

∫
sec ( ) ( ; )

sec ( ; )

d e

d

0

Ω .  (10) 

For the downward going radiation, the solar 
radiation naturally plays the part of the solution to the 
homogeneous equation; it formally bounds the constant 
q. To avoid some mathematical troubles, we may 
simply return to Eqs. (1) and (3): if the unit vector n0 
determines the direction of solar rays and J(0)(ω) 
describes their spectral composition, then Eq. (9) 
should be supplemented with  

 I K

p g z z

z

ν

θ

δ

ν

(0)
sec ( ; )

( ) e= −

′ ′

∞

∫
n n0

d

.  (11) 

Again we consider the procedure (6) with the 
replacements  

 u v
J

K
K J s p→ = → = →

′

′′

∫
(0)

(0)( )
, ( ) ,

ω
ω ω

ω

ω

Ω
Δω

1
d . 

The Earth’s radiation is taken into account just 
similarly in calculation of the upward going radiation. 
It is usually assumed isotropic over θ and having some 
spectral composition J0(ω). Equation (10) is 
supplemented with  

 I N

q g z z

z

0
0

ν

θ
ν

=

− ′ ′∫
e

sec ( ; )  d

  (12) 

and in the procedure (6) 

 u n
J

N
N J s q→ = = →

′

′′

∫( )
( )

, ( ) ,ω
ω

ω ω

ω

ω

0

0

1

Δω
d . 

One more term in the upward going radiation 
follows from reflection of the downward going 
radiation from the underlying surface. As known, this 
problem is discussed rather differently than the similar 
problem in electrodynamics. The macroscopic 
underlying surface with its obvious œroughnessB and 
other factors drastically œprocessingB the radiation 
incident on it reflects as a Lambertian surface and 
responses to the total (integral over ω) radiative flux 
(i.e. by the value of the type (1)). From this we have 
the definition of the spectral albedo 

 

A(ω) = 
reflected spectral flux

total incident flux F↓(z = 0)
 . 

 

Therefore, the spectral intensity of reflected 
radiation is  

 
A

F z J
( )

( )
~

( )
ω

π

ω
↓

= =0 0  

(π is the normalization factor corresponding to the 
definition of `). The rest remains the same as in 
Eq. (12), and so we have  

 ′ = ′

− ′ ′ ′∫
I N

q g z z

z

0
0

ν

θ
ν

e

sec ( ; ) d

  (13) 

with the replacements 

 n n
A

A

→ ′ =

′

′′

∫
( )

( )

( )

,ω
ω

ω ω

ω

ω

1

Δω
d
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 N N J q q→ ′ = → ′

′

′′

∫
1

0
Δω

~
( ) ,ω ω

ω

ω

d . 

Thus, the intensity of the downward going 
radiation is  

 I b↓

=

= + < ≤∑ ν

ν

π
θ π[( ) ( )] ,9 11

2
1

  (14) 

while the intensity of the upward going radiation is 

 I b
↑

=

= + +∑ ν

ν

[( ) ( ) ( )]10 12 13

1

.  (15) 

Arguments in Eqs. (14) and (15) are only z and θ, 
so, by the definition (7), 

div ,

{( )} sin cos {( )} sin cos

/

/

F =

= −

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

≡

≡∫∫

∂

∂

∂

∂

π θ θ θ θ θ θ

π

ππ

F

z

F

z

F

3

20

2

2 15 14d d

  

 ≡ −
↑ ↓F F .  (16) 

The minus sign appears because the third axis of 
the coordinate system (F3, the corresponding 
component of F) is directed along the vertical. The 
integrals over θ in Eq. (16) can easily be reduced to 
the integral exponential function 

 E y mm

y

m
( ) , , , , ...= =

−
∞

∫
e dξ ξ

ξ1

0 1 2 , 

and here it is obvious significance that the simple 
exponential structure of the solution (8) survives. 

The next stage is connected with the transition to 
the model of stratified atmosphere: the atmosphere is 
assumed consisting of layers (k is the index of a layer; 
zk $ 1 and zk are its boundaries, lk = zk $ zk $ 1 is the 
layer thickness; k = 1, 2, … , starting from the 
ground), and thermodynamic characteristics 
(temperature, pressure, concentration of absorbing 
gases) are assumed constant within a layer. (The layer’s 
index k is assigned to them either, for example, Θk and 
ρk in Eq. (7)). The aim of this action is to pass from 
Eq. (7) with partial derivatives to the system of 
ordinary differential equations for Θk. 

Such a model assumes a possibility of neglecting 
the microstructure of a layer (it may prove significant, 
for example, when considering convection), and 
Eq. (7) can formally be averaged by the operation 

( )1

1

l zk

z

z

k

k

d

−

∫  which gives rise to the term cp ρk äΘk/ät 

in the left-hand side of the equation. In the right-hand 
side of the equation, direct integration (16): 

 
1 1

1

1
l

F

z
z

l
F z F z

k
z

z

k

k k

k

k

−
⎛

⎝
⎜

⎞

⎠
⎟ = −

−

∫ −

∂

∂
d [ ( ) ( )] ,  (17) 

is possible, because F is already considered as 
depending on average macroscopic characteristics of the 
layer, and Eq. (7) is actually transformed into the 
system of equations for them. Equation (17) reduces 
the problem to calculation of fluxes at a certain level $ 
the layer’s boundary. 

The algorithm for calculation of F(zk) is simple, 
and we illustrate it using as an example of the 
downward going diffuse flux: Eq. (8) is substituted in 
Eq. (16) successively for z = z1, z2, ... . In the 
following formulas Ωk and sk(gk) are Ω in the kth layer 

and τ(ν)k  = sk(gν)lk. 

The result is obvious at z → z1: 

I z z z s g z

s g z

s g z z

z

z

s g z z

z

z

z

z

ν ν

θ

ν
θ

θ

ν

ν

↑
− ′′ ′′

− − ′

= ′ ′ ′ =

= ′

′

∫
∫

∫

( ) sec ( ) ( ; ) e

( ) e .
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( )sec ( )

1

1 1

0

1

1 1

0

1

d

d

d

Ω

Ω

 

If z → z2, then  d d d′ = ′ + ′∫∫∫ z z z

z

z

z

z

z

z

1

2

0

1

0

2

 with its own 

Ωk and sk for each term: 

 

{ }
I z s z

s z

s z z s l

z

z

s z z

z

z

ν

θ

θ

θ

θ

↑ − − ′ +

− − ′

= ′ +

+ ′

∫

∫

( ) sec e

sec e .

sec ( )

sec ( )

2 1 1

2 2

1 1 2 2

0

1

2 2

1

2

Ω

Ω

d

d

. 

By the same procedure we obtain that  

 

I z s z

s z

s z

s z z s l s l

z

z

s z z s l

z

z

s z z

z

z

ν
θ

θ

θ

θ

θ

θ

↑ − − ′ + +
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= ′ +

+ ′ +

+ ′

∫

∫

∫
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3 3

1 1 2 2 3 3

0

1

2 2 3 3

1

2

3 3

2

3

Ω

Ω

Ω

d

d
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and so on. Upon the following integration over z′ and θ 
we have 

F z E

F z E

E

E

E

k k k k k

k k k k

k k k k k

ν
ν

ν
ν

ν ν

ν ν ν

π π τ
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π τ τ τ
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↑

↑
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The downward going diffuse flux is calculated in 
perfect analogy (the subscript j is for the upper layer; 
the minus sign is already taken into account) as: 

F z E

F z E

j j j

j k j k j k j k j k

ν
ν

ν
ν

π π τ

π π τ

↓
−

↓
− − + − + − + − +

= − +

= − + − +

( ) ( ),
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( ) ( ) ( )

( )

( )

1 3

1 1 2 3 1

2

2

Ω
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+ − + + +

+ − + + + +

+ + + +

− + − + − + − +

− − + − + −

− + − +

2

2

2

2 3 3 1 2

1 3 1 2 1

3 1 2

π τ τ

π τ τ τ

π τ τ τ

ν ν

ν ν ν

ν ν ν

( ) ( ) ...

( ) ( ... )

( ... ).

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

Ω Ω

Ω Ω

Ω

j k j k j k j k

j j j k j k j

j j k j k j

E

E

E

 

The case of solar fluxes is rather easy: the 
constant K from Eq. (11) is multiplied by cos θ0 (θ0 is 
the direction of the solar rays) and for the layer zj $ k 
by 

 exp ( ~ ~ ... ~ )( ) ( ) ( )
− − − −

− + − +
τ τ τ

ν ν ν

j k j k j1 2
 

with ~ ( )( )
τ

ν

νk k kl p g= . The fluxes from the underlying 

surface are the constants N and N′ from Eqs. (12)  
and (13) multiplied by 2πe3 whose arguments for  
the level zk are e q g e q g e q gk k1 1 2 2( ) ( ) ... ( )

ν ν ν
+ + +  or 

e q g e q g e q gk k1 1 2 2′ + ′ + + ′( ) ( ) ... ( )
ν ν ν

. 

 

3. Subsequent approximations 
 

Many computational techniques (see, for example, 
Ref. 6) try to present the fluxes in terms of the 
transmission function 

 Q x= −

′

′′

∫
1

Δω
e di( )ω

ω

ω

ω  

for the path of the beam of length x in a homogeneous 
medium. Medium inhomogeneity is then taken into 
account by using œaverageB pressure and temperature,3,7 
whereas the diffuse character of radiation (integration 
(16)) is taken into account by multiplying the optical 
density τ = xi by a properly chosen factor.3 The 
practical significance of this action is obvious: it allows 
one to use the experimental (or other) information 
directly for the absorption function 1 $ Q.  

The application of exponential series for Q yields 
the series8: 

 Q b x s g
=

−∑ ν

ν

νe
( ) ,  (19) 

where s(g) is the function inverse to 

 

[ ]

g s

s

( ) .

( ) , ,

=

≤ ∈ ′ ′′

∫
1

Δω
dω

ω ω ω ωi

 

Comparing this equation with Eq. (16), we see 
that the condition of passing to the discussed version is 
u ≅ 1; the same is true for v, n, and n′ written after 
Eqs. (11), (12), and (13). 

Even more simple scheme (see, for example, 
Ref. 9) appears for the heuristic, in its essence, 
expression written for the flux (for example, upward 
going one)  

 F z F z Q F z D Qk k k k( ) ( ) ( ) ( ) ( )− = − − + −
− −1 11 1   (20) 

with the obvious meaning of the terms. The symbol Dk 
is used for the total radiative flux of the black body at 

Θk. In our designations Dk = πΘk, if dω∫  is assumed 

to be performed over the entire spectrum. 
Of course, Eq. (20) can be simply treated as a 

definition of some parameter 

 1 1

1

− =
−

−

−

−

Q
F z F z

F z

k k

k k

( ) ( )

( )πΩ
,  (21) 

and what we need is only to see when Q actually 
becomes the transmission function of the layer under 
consideration. Let us consider this problem from the 
position presented by Eqs. (18), assuming of course 
that Eq. (21) deals with F

ν

↑. To be certain, we assume 

k = 4; at the same time, this version is completely 
representative for explanation of the approximation. 

Thus, under our assumptions, the numerator and 
denominator of Eq. (21) are 

π τ

π τ τ τ

π τ τ τ τ τ
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Then, as follows from the definition of Em,  

 

E a E a b E a
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if b << a. Besides, if we take a >> 1, then Em′/Em → 1 

and under our assumptions the expression in the braces 
can be replaced by [1 $ exp ($ b)]. The same 
expression is asymptotic for [1 $ 2E3(b)] also at b >> 1. 

In our case the role of b is played by τ(ν)
k

 (optical 

density of the chosen layer). It should be assumed 
small as compared with the sum of optical densities of 
œprecedingB layers which is sufficiently large. At the 

same time, τ(ν)
k

 itself must be not very large. Under 

such conditions, the ratio of the numerator and 

denominator is [1 $ exp ($ τ(ν)
k

)], what essentially 

coincides with Q in Eq. (20) with the account of 
Eq. (19).  
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It is sometimes more convenient to use equations 
of the type (18) in the form including the derivatives 
of Ω(z), because they vanish for the isothermal 
atmosphere, what certainly simplifies analysis of some 
physical situations, for example, those close to 
isothermal. Here we should first perform integration in 
Eq. (16) after substitution of the corresponding 

integrands, transform d ′∫ z  by integration by parts, 

and use known properties of Em during the transition to 
the stratified atmosphere. Thus, for example, we have 
the following expression, instead of Eq. (18),  

 

I
↑

ν
(zk) = πΩ(zk) $ 2π 

 Ω
′
1 

s1(gν)
 × 

× [E4(τ
(ν)
k  + ... + τ

(ν)
2 ) $ E4(τ

(ν)
k  + τ

(ν)
k$1 + ... + τ

(ν)
1 )] +  

+ 
 Ω

′
2 

s2(gν)
 [E4(τ

(ν)
k  + ... + τ

(ν)
3 ) $ E4(τ

(ν)
k  + τ

(ν)
k$1 + ... + 

+ τ
(ν)
2 )] + ... + 

 Ω
′
k$1 

sk$1(gν)
 [E4(τ

(ν)
k  $ E4(τ

(ν)
k  + τ

(ν)
k$1)] + 

+ 
 Ω

′
k 

sk(gν)
 [E4(0) $ E4(τ

(ν)
k )]. 

 

Here Ω′
k
 is dΩ(z)/dz for the kth layer. 
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