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The state and the prospects of the radiative transfer theory in inhomogeneous clouds are 
discussed. Urgent problems of atmospheric optics are emphasized. It is shown that for developing the 
radiation parameterizations and solving remote sensing problems, the stochastic geometry and 
inhomogeneous internal cloud structure should be adequately taken into account. 

 

1. Introduction 
 

Study of global climate and prediction of likely 
climate change scenarios are impossible without 
adequate treatment and correct parameterization of 
cloud#radiation interaction. Detailed knowledge of 
physical, optical, and radiative cloud properties, as 
well as of the spatial cloud inhomogeneity, is highly 
important not only for assessment of cloud impact on 
climate, but also for interpreting data of remote 
sensing. The radiative properties of clouds have been 
studied in a number of international and national 
programs such as International Satellite Cloud 
Climatology Project (ISCCP), United States Global 
Change Research Program (USGCRP), and GEWEX 
Cloud System Study (GCSS). 

Cloud inhomogeneity is caused by both cloud field 
stochastic geometry (irregular boundaries, amount, 
sizes, and spatial positions of clouds) and 
inhomogeneous internal cloud structure (fluctuations of 
liquid water content, phase composition, and particle 
size spectrum). As a result, no one-to-one relationship 
between radiation intensity and cloud parameters can 
be established because of the stochastic cloud field 
geometry. However, the mean radiative properties are 
predictable. Normally no detailed description of 
radiation field is required in climate models, and only 
mean radiative parameters are needed to predict long-
term trends in climate. Therefore, the problem of 
statistical radiative transfer in clouds has been of a 
great concern as being aimed at establishing the 
relationship between the statistical parameters of clouds 
and radiation. Although the necessity of such a 
statistical approach has long been recognized and a 
number of models and methods have already been 
developed,1$10 many issues still remain unresolved. 

The study of radiative transfer through 
inhomogeneous clouds has been being conducted within 
two, quite vast and overlapping research areas. The 
first one includes investigations, dating at least to the 
paper by Avaste and Vainikko11 in which they 
estimated the influence of broken clouds on radiative 
transfer.12$16 Here and below, by broken clouds we 
understand a cloud field with stochastic geometry while 

deterministic optical parameters inside an individual 
cloud. It should be stressed that the statistical theory of 
radiative transfer in broken clouds has been intensively 
developed at the Institute of Atmospheric Optics SB RAS 
for over 20 years.18$20,22 A considerable contribution to 
the stochastic radiative transfer theory has been made by 
professor Pomraning and his colleagues (see, e.g., Ref. 17 
and bibliography therein). 

Even more activity has been invested recently in 
the second research area dealing with the radiation 
interaction with inhomogeneous stratocumulus (Sc) 
clouds,23$27 especially after initiation of the First 
ISCCP Regional Experiment (FIRE), during which 
first data on the horizontal distribution of liquid 
water path (optical depth) of marine Sc have been 
collected28 and its influence on the mean albedo 
studied.29,30 

It is quite clearly that it is impossible to review 
both research areas in full detail in a single paper, so only 
brief description of the main results obtained in both of 
these areas, in particular, at the Institute of Atmospheric 
Optics SB RAS are presented in this paper. 

 

2. Inhomogeneous stratocumulus clouds 
 

Typically marine Sc clouds have considerable 
horizontal extension and small geometrical thickness; so 
they are most frequently treated as plane parallel.24,29,30 
Experimental data show that the horizontal variations of 
optical depth (liquid water path) are well described by 
the lognormal distribution and power-law spectrum with 
the exponent corresponding to the Kolmogorov$Obukhov 
law.28 The observed horizontal distribution of optical 
depth τ is modeled using a two-parameter fractal model 
generated by multiplicative cascade processes.31 Based on 
this plane parallel model, the effect of horizontal 
inhomogeneities in τ on the solar radiative transfer has 
been studied.29,30,32$35 

The numerical realizations of the random fields 
with prescribed one-dimensional distribution and 
spectral density (correlation function) can be 
constructed based on the methods of spectrum analysis 
and randomization.36$38 The latter, noticeably superior 
over fractal models,39 have been used by ourselves to 
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study the sensitivity of radiative properties of Sc clouds 
to their inhomogeneous spatial structure40$49 (Fig. 1). 

 

 
Fig. 1. Computer realization of two-dimensional field of the 
marine stratocumulus clouds optical depth. 
 

We would like to note here that, in contrast to 
fractal models, the spectral methods allow one to 
construct numerical realizations of the fields whose 
spectra have scale breaks.50 The occurrence of such 
fields in the atmosphere has been revealed from satellite 
observations (see section 2.1). The transfer of solar 
radiation through inhomogeneous Sc clouds was studied 
using two cloud models as given in Refs. 43 and 46 in 
detail. The first (WP) model assumes plane parallel 
geometry and random horizontal distribution of optical 
depth (extinction coefficient). In the second (GWP) 
model, the fluctuations of both the extinction 
coefficient and height of cloud top boundary are 
simultaneously taken into consideration. A few-
parameter model of stochastic upper boundary of Sc 
clouds was constructed based on data of airborne laser 
sensing obtained at the Institute of Atmospheric Optics 
SB RAS. 

Next sections address two most controversial issues 
concerning the horizontal radiative fluxes (horizontal 
transport). 

2.1. Scale break inferred from satellite 
observations 

The power-law spatial spectrum of reflected 
radiation, inferred from satellite (Landsat) data, has 
two different slopes at large (from ∼ 100 km to ∼ 200$
500 m) and small (less than ∼ 200$500 m) 
scales.28,51,52 The radiative field is much smoother (the 
exponent is larger) at smaller than larger scales. The 
satellite-based radiation measurements are an important 
source of vital geophysical information, e.g., on the 
turbulence inside a cloud; so the causes for such 

an BunusualB spectral behavior of reflected radiance are 
of great recent concern.28,32,34,51$53 The different 
spatial distributions of clouds at large and small spatial 
scales may be one of the likely explanation for the 
observed scale break. For instance, Reference 53 argues 
that (1) the horizontal wind may influence considerably 

the cloud structure; and (2) this influence depends on 
the spatial scale. The horizontal wind can also smooth 
out the surface of small-size clouds.54 

Alternatively, the scale break is explained not by 
the scale-sensitive spatial distribution of clouds, but 
rather by the radiative smoothing effect,32 i.e., 
smoothing of small-scale radiative field fluctuations by 
the horizontal radiative fluxes (radiative horizontal 
transport). Note that the reflected Landsat radiances have 
been measured with high (∼ 0.05 km) horizontal 
resolution. It was found32,34 that the characteristic scale 
η, where the scale break takes place, is proportional to 

⎯⎯  ρ2, where ⎯⎯  ρ2 is the second moment of distribution of 
distances between photon entry and exit points. In diffuse 

approximation, it was found that 

 ⎯⎯  ρ2 ≈ 
⎩
⎨
⎧h[(1 $ g)τ]$1/2 for albedo,

h for transmittance,
  (1) 

where h is the cloud thickness; g is the asymmetry 
factor; and τ is the optical depth. For inhomogeneous 
clouds, one can use, instead of τ and h, their  average 

(over a realization) values, τ# and h
#

. From Eq. (1) we 

can conclude that ⎯⎯  ρ2 depends on standard parameters 
that determine the radiative transfer in homogeneous 
clouds $ h, g, and τ. Our results suggest that the 
horizontal radiative fluxes strongly depend both on the 
horizontal gradient of optical depth,43,48 and on the 
irregular geometry of cloud top boundary.46,47 In 

particular, for fixed τ# and h
#

 values, variations in the 
cloud top boundary height may cause approximately an 
order of magnitude increase in the variance of the 
horizontal transport.46 Let us assume that the 
horizontal transport actually determines the 
characteristic scale η. This means that with variations 
of the geometrical (optical) parameters of a cloud field 

the characteristic scale η and ⎯⎯  ρ2, proportional to it, 
both must change. However, from Eq. (1) it follows 

that ⎯⎯  ρ2 does not depend on parameters characterizing 
the spatial variability of the cloud layer. For this 
reason, no one-to-one relationship exists between η and 

⎯⎯  ρ2, and, thus, ⎯⎯  ρ2 cannot determine η. Reference 
49 clearly demonstrates that the explanation of scale 
break in terms of the smoothing effect of the horizontal 
radiative fluxes, as well as the hypothesis that the scale η 

and ⎯⎯  ρ2 are interrelated, has no good physical grounds. 
 

2.2. Anomalous cloud absorption problem 

Cloud absorption measured in the field may 
exceed considerably (by more than a factor of two) the 
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radiation calculations (see, e.g., Ref. 55). What is the 
reason for such a large discrepancy? Why negative 
cloud absorption values may occasionally be found 
when traditional measurement techniques are applied55$

57? Answering these key questions has been the topic of 
many theoretical and experimental studies over the last 
40 years. 

Most of the radiation calculations are based on 
plane parallel model (plane parallel geometry and 
horizontal homogeneity of optical properties of a cloud 
field); so it is expected that the stochastic cloud 
geometry and/or inhomogeneous internal cloud 
structure are mainly responsible for the excess 
absorption that is being observed in the experiments. 
Our results show that, for fixed τ# and h

#
, the 

stochasticity of cloud top boundary and horizontal 
fluctuations of extinction coefficient have little 
influence on the mean absorption of Sc clouds.46 This 
finding also applies to broken clouds (see, e.g., 
Ref. 58). At τ# less than 30$40, absorption of cumulus 
clouds, whose optical and geometrical properties are 
most variable in space and show most strong 
fluctuations, is, on the average, about 1/5 of the total 
atmospheric absorption and differs quite insignificantly 
(by less than 2 $ 3% of incident solar radiation) from a 
plane parallel estimate. This fact indicates that, on the 
average, the stochastic cumulus clouds are unable to 
absorb much more solar radiation than the deterministic 
radiative transfer theory predicts. 

Alternatively, the large difference between 
calculated and observed absorption may be due to 
incorrect interpretation of the experimental data. The 
results presented below clearly illustrate considerable 
influence of the horizontal transport on the accuracy of 
cloud absorption retrievals. Now we will give an 
outline of the problem on determining the absorption in 
inhomogeneous clouds.44,48 For simplicity, we assume 
that the clouds are located over a nonreflecting 
underlying surface, while their optical characteristics 
depend only on the horizontal coordinate x. Then, the 
radiative energy conservation law in inhomogeneous 
clouds has the form 

 R(x) + T(x) + A(x) = 1 $ E(x).  (2) 

In this equation, the unknown functions are 
albedo R(x), transmission T(x), absorption A(x), and 
horizontal transport E(x); of which only albedo and 
transmission are measured in practice. Therefore, 
instead of actual absorption A(x), from Eq. (2) we can 
only determine the reconstructed absorption: 

 A′(x) = A(x) + E(x) = 1 $ R(x) $ T(x).  (3) 

From Eq. (3) it follows that if the horizontal 
transport, being zero in the plane parallel model, is 
comparable, by the order of magnitude, with A(x), 
then the reconstructed absorption, A′(x), may 

considerably diverge from the actual one, A(x). In 
Fig. 2, A(x) is plotted versus A′(x). Since the horizontal 
transport E(x) may take either positive or negative sign, 
the same may happen to the reconstructed absorption 

A′(x). Due to the stochastic geometry of the cloud top 
boundary, the ranges of possible A(x) and A′(x) values 
may increase by more than two and three times, 
respectively.46 As seen, the single net-flux measurements 
cannot provide reliable cloud absorption estimates at 
small (∼ 0.05 km) spatial scales. The A(x) estimates 
can be improved using two approaches based on (i) 
spatial averaging of radiative characteristics; and (ii) 
synchronous flux measurements in the visible and near-IR 
spectral regions.44,48 The simultaneous measurements of 
the visible and near-IR fluxes can be used to study small-
scale (∼ 0.05 km) variations of absorption by plane 
parallel clouds.44,48 Due to the stochastic geometry of Sc 
cloud top boundary, the retrieval accuracy may degrade 
by about an order of magnitude.46 

 

 
= 

 
b 
 

Fig. 2. Absorption A versus reconstructed absorption 
A′ = A + E for solar zenith angle 60° and single scattering 
albedo ω0 = 0.99. Computations were made for a cloud 
realization consisting of 212 pixels with the same horizontal 
size Δ�x = 0.05 km. 



       Atmos. Oceanic Opt.  /October  1999/  Vol. 12,  No. 10 G.A. Titov  and E.I. Kassianov 
 
876 

From the results presented here it follows that 
incorrect interpretation of field data is one of the main 
reasons for existing discrepancy between the theory and 
experiment. 

2.3. Three-dimensional stratocumulus clouds 

The above analysis is based on quite a simple, one-

dimensional (1D) (i.e., depending on just the 
horizontal coordinate) cloud models accounting for 
either fluctuations of cloud top height or extinction 
coefficient, or both. It was assumed that the cloud top 
height and extinction coefficient are independent 
random processes; whereas in real clouds, optical 
properties (extinction coefficient, single scattering 
albedo, and scattering phase function) all vary in both 
horizontal and vertical directions and, moreover, the 
variations of optical and geometrical characteristics in 
3D space are interrelated. 

The 3D Large Eddy Simulation (LES) cloud 
models with explicit microphysics proved to be a highly 
promising tool allowing correct treatment of this 
complex relationship in the radiation studies (see, e.g., 
Refs. 59 and 60). We used the Cooperative Institute for 
Mesoscale Meteorological Studies (CIMMS) LES cloud 
model61,62 to study the radiative effects of 3D 
stratocumulus clouds.63$66 The obtained results 
confirmed main conclusions that have been drawn 
earlier with the use of simpler cloud models and 
demonstrated that the radiative properties of Sc clouds 
depend strongly on their vertical stratification. In 
particular, it was shown that the mean fluxes, 
calculated for two cloud fields with the same 2D 
optical depth distribution but different vertical 
structures, may substantially differ.66 

The LES models may provide information not only 
on the 3D distribution of liquid water (particle size 
spectrum), but also on the water vapor. The latter is 
critical when radiative properties of inhomogeneous 
clouds are calculated in the IR spectral range, 
especially in the water vapor absorption bands. The 
utility of these data is well illustrated by the following 
example. Presently, the absorption retrieval methods 
frequently assume that the variations of the horizontal 
transport E are determined by the corresponding 
variations in the scattering properties (scattering 
coefficient and scattering phase function),33,57,67 whose 
spectral behavior can be safely neglected. We showed 
that absorption by water droplets and water vapor has 
considerable influence on E and determines its spectral 
dependence. The neglect of this dependence may 
introduce serious errors in cloud absorption 
estimates.64,65 

 

3. Broken clouds 
 
In the atmosphere there often occur fields of 

cumulus cloud that only partially cover the sky. 
Numerous individual clouds vary in size and shape and 

have different positions (Fig. 3). The irregular cloud 
geometry has stronger influence on the solar radiative 
transfer than inhomogeneous internal cloud 
structure9,20,21,66; therefore, the fluctuations of optical 
properties inside an individual cloud can be neglected 
in the first approximation. One possible and promising 
theoretical treatment of the radiative transfer in broken 
clouds, having random geometry and deterministic 
optical parameters, has been currently developed at the 
Institute of Atmospheric Optics SB RAS. The main 
achievements in this research area over the past two 
decades (1975$1995), as well as a vast bibliography, 
have been summarized in Refs. 20$22. 

 

 

Fig. 3. A computer realization of 2D optical depth field of 
cumulus clouds. 

 

In this section, only main results, obtained at the 
Institute of Atmospheric Optics in recent five years, 
will be discussed briefly. 

3.1. Parameterization of radiative properties of 
single-layer broken clouds 

The radiation codes of general circulation models 
(GCMs) cannot be improved without adequate 
treatment of interaction of radiation with broken 
clouds. The mean radiative fluxes Fbc in broken clouds 
can be represented as a linear combination of overcast 
and clear-sky fluxes, Fpp and Fclr, taken with weights 
Ne and (1 $ Ne), respectively. Here Ne is the effective 
cloud fraction. The term BeffectiveB is used to indicate 
that the parameter Ne depends not only on the three-
dimensional geometry and optical properties of the 
broken clouds, but also on the solar zenith angle and 
surface albedo As. The Fpp and Fclr values can be 
readily calculated from the well-developed deterministic 
radiative transfer theory; therefore, for a proper Fbc 
determination, Ne value should be correctly specified. A 
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fast and convenient method of calculating Ne, as well 
as a new, Ne-based parameterization of the radiative 
regime in single-layer broken clouds, is presented in 
Ref. 68. Using the created numerical model of Ne, the 
dependence of the mean fluxes on optical and 
geometrical parameters of broken clouds, solar zenith 
angle, and surface albedo As can be thoroughly 
studied69 (Fig. 4). It is shown that the stochastic cloud 
geometry can have a considerable influence on Ne and, 
hence, the radiation parameterizations developed for the 

cumulus clouds should take it adequately into account. 
This radiation parameterization has several advantages 
over other radiation models; and it is most important 
that it can be readily incorporated into the existing 
GCM radiation codes without serious changes of the 
latter. 

3.2. Multilayer broken clouds 

Cloud field may consist of several cloud 
layers,70,71 and the broken clouds may be 
simultaneously present at all atmospheric levels. So, 
calculation of radiative properties of multilayer clouds 
may be frequently needed. 

In the discussion that follows we will address a 
generalization of the statistical approach, developed for 
single-layer broken clouds, to N statistically 
independent layers. The main idea of such a 
generalization will be explained by the simplest 
example of unscattered radiation. For integrity of 
presentation, we remind the main steps in derivation of 
equation for mean intensity of unscattered radiation in 
one-layer broken clouds.22,72 

Suppose that the broken clouds occupy a layer Λ: 
0 ≤ z ≤ H. Let a parallel solar flux be incident on the 
plane z = 0 in the direction ω = (a, b, c). For 

simplicity, we assume that the flux has a unit intensity 
and that extinction coefficient σ(r) = σ = const. The 
intensity of unscattered radiation j(r) at the point r in 
the direction ω is a solution of the stochastic transfer 
equation 

 ω∇j(r) + σκ(r) j(r) = 0  (4) 

with the boundary condition 

 j(r0) = j(x, y, 0) = 1.  (5) 

In contrast to the deterministic transfer equation, 
stochastic equation (4) contains a random indicator 
field κ(r) that characterizes the irregular geometry of 
broken clouds. As defined, κ(r) = 1 inside the clouds, 
and κ(r) = 0 in gaps among the clouds. The statistically 

homogeneous model19 is described completely by 

unconditional and conditional probabilities of the cloud 
presence, 〈κ(r)〉 and V(r, r′) = P{κ(r) = 
= 1/κ(r′) = 1} (Markov approximation). The input 
model parameters are related to the cloud fraction p 
and the mean horizontal cloud size D as 〈κ(r)〉 = p and 
V(r, r′)  =  f(p, D)  =  (1 $ p) exp ($ A(ω)|r $ r′|)  +  p, 
where A(ω) ∼ 1/D. 

By inverting the differential operator in Eq. (4) 
for c ≠ 0, we obtain 

 j(r) + 
σ
c
 ⌡⌠

0

z

 κ(r′) j(r′) dξ = 1,  (6) 

where r′ = r + ω(ξ $ z)/c. Let us average Eq. (6) over 
the ensemble of κ(r) field realizations 

 〈�j(r)〉 + 
σ
c
 ⌡⌠

0

z

 〈κ(r′) j(r′)〉 dξ = 1.  (7) 
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Fig. 4. Effective cloud fraction Ne as a function of solar zenith angle and cloud fraction for the optical depth τ = 15, aspect ratio 
γ = 2 (defined here as γ = ΔH/D, where ΔH is the geometrical thickness of the cloud layer and D is the mean horizontal cloud 
size), and surface albedo As = 0 (a) and 0.4 (b). 
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Multiply then Eq. (6) by κ(r) and average once more  

 〈κ(r) j(r)〉 + 
σ
c
 ⌡⌠

0

z

 〈κ(r) κ(r′) j(r′)〉 dξ = 〈κ(r)〉.  (8) 

Using formula for correlation splitting, 
〈κ(r) κ(r′) j(r′)〉 = V(r, r′) 〈κ(r′) j(r′)〉, Equation (8) 
can be written as follows: 

〈κ(r) j(r)〉 + 
σ
c
 ⌡⌠

0

z

 V(r, r′) 〈κ(r′) j(r′)〉 dξ = 〈κ(r)〉.  (8a) 

The closed system of equations (7) and (8a) can 
be solved using the Laplace transform. The mean 
intensity 〈 j(r)〉 is calculated from simple formula (see, 
e.g., Ref. 22, formula (7.10)). 

Let us turn to the derivation of equations for the 
mean intensity of unscattered radiation in a cloud field 
composed of two layers of broken clouds (Fig. 5). We 
assume that these layers are statistically homogeneous 
and independent. In this case, 〈κ(r)〉 = p1 and 
V(r, r′) = f(p1, D1) for the first layer (0 ≤ z ≤ h), and 
〈κ(r)〉 = p2 and V(r, r′) = f(p2, D2) for the second 
layer (h < z ≤ H). 

 

r0

ω

p1, D1, σ1

p2, D2, σ2

r

r1

z = H

z = h

z = 0

 
Fig. 5. Schematic illustration of the two-layer cloud model. 

 

If the point r1 belongs to the first layer 
(0 ≤ z ≤ h), then the system of equations for the mean 
intensity 〈 j(r1, r0)〉 is given by Eqs. (7) and (8a). 
Otherwise, for a point r located in the second layer 
(h < z ≤ H), the equations for mean intensity (7) and 
(8a) modify to the ones having other integration limits 
and different right-hand sides: 1 in Eq. (7) changes to 
〈�j(r1, r0)〉, and 〈κ(r)〉 in (8a) is replaced by the product 
of the means 〈κ(r)〉 〈�j(r1, r0)〉. Obviously, 
〈�j(r, r0)〉 = 〈�j(r, r1)〉 〈�j(r1, r0)〉 in this case. When the 
functions 〈�j(r1, r0)〉 and 〈�j(r, r1)〉 are calculated by 
standard formula,22 the parameters for the first and 
second layers, respectively, should be used. 
Generalization to N (≥ 2) statistically independent 
layers is quite straightforward. The mean intensity of 
unscattered radiation for the Nth layer is calculated by 

 〈�j(r, r0)〉 = 〈 j(r, rN $ 1)〉 Π
N $ 1

n = 1
〈�j(rn, rn $ 1)〉. 

The mean diffuse intensity is calculated quite 
easily also. In each of the cloud layer, the photon 
trajectories  are simulated by standard algorithms (see, 
e.g., Refs. 19 and 22) using parameters corresponding 
to a given cloud layer, while the local estimate is made 
with the account of the statistically homogeneous and 
independent cloud layers located above (reflection, 
“ > 0) or below (transmission, “ < 0) this layer. For 
instance, contribution of photons reflected from the 
underlying surface to the mean intensity of reflected 
radiation at the top of the Nth layer (local estimate) is 
proportional to the product of the mean intensities 
calculated for each of the N layers: 

 〈�j(r, rN $ 1)〉 Π
N $ 1

n = 1
〈j(rn, rn $ 1)〉. 

For the single-layer clouds, this contribution is 
proportional to just one of the factors, namely 
〈�j(r1, r0)〉. Note that the algorithms of calculating the 
brightness fields of multilayer atmosphere,73 located 
over a reflecting surface, have been successfully used to 
solve an important applied problem.74 The radiative 
properties of a system, consisting of two statistically 
independent layers of broken clouds, have been studied 
in Ref. 75. 

This method is only applicable when the spatial 
distributions of clouds at individual atmospheric levels 
do not depend on how the clouds are distributed over 
the other levels (the hypothesis of random cloud 
overlap). However, the total cloud fractions calculated 
for two- and three-layer clouds assuming random cloud 
overlap frequently disagree with the measurements, 
with the largest differences observed for two-layer 
broken clouds.70 This suggests that the multilevel cloud 
systems may contain statistically dependent broken-
cloud layers; so, different combinations of maximum 
and random cloud overlaps are normally used in GCMs 
to simulate this.76,77 In single-layer 3D broken clouds, 
the geometrical parameters (cloud fraction, mean 
horizontal cloud size, etc.) vary with altitude, and 
values of these parameters at different altitudes are 
interrelated. 

In this connection, there is a need to generalize 
the ideas and methods developed within the statistically 
homogeneous model19 to the case of statistically 
inhomogeneous broken clouds. The Bstatistical 
inhomogeneityB will be understood in the meaning that 
the unconditional probability 〈κ(r)〉 depends on the 
vertical coordinate while the conditional probability 
V(r, r′) depends on the positions of points r and r′. 
Remind that, in the statistically homogeneous model, 
〈κ(r)〉 = p = const, while V(r, r′), for a fixed ω, 
depends only on the distance between points r and r′.19 
For a cloud field consisting of statistically homogeneous 
and independent fields V(r, r′) = 〈κ(r)〉. 
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3.3. Statistically inhomogeneous model 

The broken clouds can be represented as a 
Markovian mixture of cloudy (κ(r) = 1) and noncloudy 
(κ(r) = 0) segments. To obtain the conditional 
probability V*(r, r′) of the cloud presence, we will use 
the piecewise constant approximation of probabilities of 
transition from cloud to clear sky and backward. It is 
assumed that the probability of transition, on a short 
distance Δl = Δz/c, from clear sky to cloud (0 → 1) is 
μi Δl and from cloud to clear sky (1 → 0) is λi Δl, 
i = 1, 2, ... , N, where N is the number of statistically 
homogeneous and dependent layers. Note that 1/λ and 
1/μ can be interpreted as mean chord lengths in the 
cloudy and cloud-free segments, respectively, and they 
can depend on the direction ω (see, e.g., Refs. 16 and 
17). The conditional probability of cloud presence 
V*(r, r′) = V*(l) = V*(z, ξ) satisfies the Chapman$
Kolmogorov equation (see, e.g., Ref. 78): 

 
дV*(l)

дl
 = $ (λ + μ) V*(l) + μ,   V*(0) = 1,  (9) 

where l = |r $ r′|; and λ and μ are piecewise constant 
functions of l or z. General solution of Eq. (9) has the 
form 

 V*(l) = exp { $ ⌡⌠
0

l

 [λ(u) + μ(u)] du} + 

 + ⌡⌠
0

l

 μ(ν) exp { $ ⌡⌠
ν

l

 [λ(u) + μ(u)]} dν .  (10) 

Let the point r belong to the first layer 
(0 ≤ z ≤ h). Then, using Eq. (10), we obtain 

 V*(z, ξ) = V1
*(l1) = (1 $ p1) exp [$ A1(z $ ξ)/c)] + p1, 

(11) 

 p1 = μ1/(λ1 + μ1) ,    A1 = λ1 + μ1.  (12) 

Here p1 can be interpreted as the cloud fraction in 
the first layer (field); and the parameter A1 is inversely 
proportional to its correlation length.15,16 Note that 
formula (11) is the conditional probability of the cloud 
occurrence in a statistically homogeneous field.19 

Let r belong to the second layer (h < z ≤ H). In 
this case, equation (10) becomes 

V2
*(z, ξ) = exp [$ A2 

(z $ z1)/c] [V(z1, ξ) $ p2] + p2 ,  (13) 

 p2 = μ2/(λ2 + μ2) ,    A2 = λ2 + μ2.  (14) 

It can be shown that  

V i
*(z, ξ) = exp [$ Ai 

(z $ zi $ 1)/c][ Vi $ 1
* (zi $ 1, ξ) $ pi] + 

 + pi ,   i = 2, ... , N ,  (15) 

pi = μi/(λi + μi) ,    Ai = λi + μi,   i = 2, ... , N. (16) 

 

Suppose that the conditional probabilities  
V i

*(z, ξ) and unconditional probabilities pi, 
i = 1, 2, ... , N, are known (either from model results 
or from field observations). Then, from Eq. (16) we 
can determine the unknown parameter Ai, 
i = 1, 2, ... , N. 

3.4. Statistically inhomogeneous model: mean 
intensity 

Let us now turn to the derivation of closed 
equations for the mean intensity of unscattered 
radiation. For simplicity, we first consider a cloud field 
consisting of two layers. Let a parallel solar flux be 
incident on the plane z = 0 in the direction ω (see 
Fig. 5). If the point r1 belongs to the first layer 
(0 ≤ z ≤ h), then coupled equations (7) and (8a) can be 
used to calculate the mean intensity 〈�j(r1, r0)〉. 

Let us determine the mean intensity 〈�j(r, r0)〉 in 
the case when the point r belongs to the second layer 
(h < z ≤ H). The random value 〈�j(r, r0)〉 of unscattered 
radiation intensity satisfies the stochastic equation 

 j(r, r0) + 
σ2

c
 ⌡⌠

h

z

 κ(r′) j(r′, r0) dξ = j(r1, r0) .  (17) 

Let us average Eq. (17) over the ensemble of κ(r) 
field realizations 

〈�j(r, r0)〉 + 
σ2 

c
 ⌡⌠

h

z

 〈κ(r′) j(r′, r0)〉 dξ = 〈�j(r1, r0)〉 .  (18) 

Multiplication of Eq. (17) by κ(r), averaging, and 
applying of the formula for correlation splitting yield 

 〈κ(r) j(r, r0)〉 + 
σ2

c
 ⌡⌠

h

z

 V(r, r′)〈κ(r′) j(r′, r0)〉 dξ = 

 = 〈κ(r) j(r1, r0)〉 .  (19) 

Following the same argument, we arrive at the 
expression for function 〈κ(r) j(r1, r0)〉: 

〈κ(r) j(r1, r0)〉 + 
σ1

c
 ⌡⌠

0

h

 V2
*(r, r′)〈κ(r′) j(r′, r0)〉 dξ = p2 . 

(20) 

Solution of the system of equations (18)$(20) has 
the form 

 〈 j(z, 0)〉 = 〈 j(z, h)〉 〈 j(h, 0)〉 + ε(z, h) α(h, 0) ,  (21) 

where 

 〈 j(z, 0)〉 = 〈 j(r, r0)〉 ,   〈 j(z, h)〉 = 〈 j(r, r1)〉 , 

 〈 j(h, 0)〉 = 〈 j(r1, r0)〉 ; 

 ε(z, h) = 

 = 
σ2 p2

λ(2)
2

 $ λ(2)
1

 ⎣
⎡

⎦
⎤exp ⎝

⎛
⎠
⎞$ λ(2)

2  
z $ h

c
 $ exp ⎝

⎛
⎠
⎞$ λ(2)

1  
z $ h

c
 ; 

(22) 
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α(h, 0) = 
1
p2

 {p2(1 $ 〈 j(h, 0)〉) $ p1[1 $ ν(h, 0)]} .  (23) 

The functions 〈 j(h, 0)〉, 〈 j(z, h)〉, ν(h, 0) = 
= 〈κ(r1) j(r1, r0)〉/p1 and the coefficients λ(2)

1 , λ(2)
2  are 

calculated from formulas obtained for the statistically 
homogeneous model.22 In coefficients λ(2)

1 , λ(2)
2 , the 

superscript (2) indicates that they should be calculated 
using the parameters for the second layer. 

These results can be readily generalized to a 
multilayer cloudy atmosphere consisting of N 
statistically homogeneous and independent layers. For a 
point r belonging to the ith layer, i = 2, 3, ... , N, the 
formula for the mean intensity of unscattered radiation 
assumes the form 

 〈 j(z, 0)〉 = 〈 j(z, zi $ 1)〉 〈 j(zi $ 1, 0)〉 + 

 + ε(z, zi $ 1) α(zi $ 1, 0) , i = 2, 3, ... , N,  (24) 

where 

 〈 j(z, zi $ 1)〉 = 〈 j(r, ri $ 1)〉 , 

 〈 j(zi $ 1, 0)〉 = 〈 j(ri $ 1, r0)〉 ,   i = 2, 3, ... , N; 

 ε(z, zi $ 1) = 
σi pi

λ(i)
2

 $ λ(i)
1

 × 

 × ⎣
⎡

⎦
⎤exp ⎝

⎛
⎠
⎞$ λ(i)

2  
z $ zi $ 1

c
 $ exp ⎝

⎛
⎠
⎞$ λ(i)

1  
z $ zi $ 1

c
 , 

 i = 2, 3, ... , N;  (25) 

 α(zi $ 1, 0) = 
1
pi

 {pi(1 $ 〈 j(zi $ 1, 0)〉) $ 

 $ pi $ 1[1 $ ν(zi $ 1, 0)]} , i = 2, 3, ... , N. (26) 

The considerations analogous to those outlined above 
can also be used to produce equations for the mean 
intensity of diffuse radiation. 

The results presented here clearly illustrate that 
the problem of radiative transfer in statistically 
inhomogeneous broken clouds can be successfully solved 
by using ideas and methods developed for statistically 
homogeneous model. 

 

4. Conclusion 
 
The deterministic radiative transfer theory has a 

long history, during which simplest one-dimensional 
radiation models have evolved to multidimensional 
ones. The evolution of the statistical radiative transfer 
theory for inhomogeneous clouds is very much the 
same, and the development stages include 
(1) construction of cloud models and development of 
the relevant techniques for radiation calculations; 
(2) study of the sensitivity of model-derived radiative 
properties to the variations of cloud parameters; and 

(3) use of this knowledge in newly developed GCM 
radiation parameterizations and for improvement of the 
remote sensing techniques. 

Recently, one- and two-dimensional models, that 
treat correctly the horizontal variability of optical 
depth τ, have been developed and, using these models, 
the dependence of radiative properties of the cumulus 
and stratocumulus clouds on the horizontal distribution 
of τ has been thoroughly studied. These results were 
used to develop new parameterizations of the radiation 
regime of one-layer broken clouds. First attempts have 
been made to study the radiation regime of two-layer 
broken clouds. Based on the airborne laser sensing data 
(IAO SB RAS), the model of stochastic geometry of 
the top boundary of stratocumulus clouds has been 
developed. The combined and individual effects of 
variations of extinction coefficient and height of the 
top boundary of stratocumulus clouds on the small- and 
large-scale spatial variations of absorption and vertical 
and horizontal fluxes of solar radiation have been 
investigated. It has been shown that the stochastic 
cloud geometry and inhomogeneous internal structure 
of clouds can strongly influence the radiative transfer.  

Most promising approach to studying the radiative 
effects of three-dimensional cloud fields has been to use 
the numerical cloud-scale models with explicit 
microphysics (LES models). This can provide a deeper 
insight into the physical nature of cloud#radiation 
interaction and identify 3D cloud properties most 
strongly influencing the radiative transfer. Of course, 
the results of these studies will help to formulate and 
solve remote sensing problems, and to create and test 
the radiation models. 

New parameterizations will be constructed based 
on realistic 3D cloud models with too large computer 
demands. It is unlikely, hence, that in the near future, 
the newly developed radiation parameterizations will 
cover the full range of cloud variability scales. 
Therefore, to calculate the statistical radiative 
characteristics of inhomogeneous clouds, it is necessary 
to construct few-parameter cloud models and develop 
approximate methods based on the analytical averaging 
of stochastic transfer equation. The existing statistically 
homogeneous model of broken clouds takes into account 
only horizontal inhomogeneity of a cloud field (the 
random amount, positions, sizes, and base shapes of 
vertically homogeneous clouds). The developed 
statistically inhomogeneous model of broken clouds is a 
logical development of the statistically homogeneous 

model and allows one to take into account both the 
horizontal and vertical cloud structure. This 
statistically inhomogeneous model, as well as the 
equations for mean intensity of unscattered radiation 
based on it, has been an important milestone in the 
development of statistical transfer theory. 

The development and validation of new cloud 
models and improved parameterizations cannot be 
advanced without experimental data on the 
probabilistic properties of three-dimensional cloud 
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fields and their radiative properties. This information 
can be obtained from integrated and simultaneous 
measurements. The processes in inhomogeneous cloud 
and radiative fields are presently an area of an active 
theoretical and experimental research. Hopefully, even 
more considerable and impressive progress will be 
achieved in the development of statistical transfer 
theory in the near future. 
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