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The effects of stimulated Raman scattering and stimulated Brillouin scattering in transparent 
spherical particles are theoretically described. The set of equations for the amplitude coefficients of fields 
of the incident and Stokes waves is derived and studied. The threshold ratio is obtained for transition 
from spontaneous scattering to stimulated Raman scattering. The spatial structure of interacting natural 
oscillational modes of a particle is shown to affect significantly the value of this threshold. It is found 
that the higher is the Q-factor of resonance modes, the more strongly it is affected by particle surface 
deformations, which may be spontaneous or connected with the effect of ponderomotive forces in a light 
field. 

 

Introduction 
 

Nonlinear optical effects of stimulated scattering, 
such as stimulated Raman scattering (SRS), stimulated 
Brillouin scattering (SBS), stimulated fluorescence 
(SF), and stimulated thermal scattering (STS), in gases 
and condensed extended media have been studied well 
enough. However, only in the past two decades it was 
discovered that these effects also manifest themselves in 
disperse matter (solid or liquid micrometer-size 
particles). This is because a micrometer-size particle for 
a long time was not considered as a subject of research 
in stimulated scattering, since the length of nonlinear 
interaction of waves needed for the field of stimulated 
scattering to be formed is at least an order of 
magnitude longer than the particle diameter. Only in 
late 70s $ early 80s, in Refs. 1$4 and others it was 
shown that spherical particles, as a laser cavity, can 
accumulate the light field energy and thus many times 
increase the time and, consequently, the length of 
nonlinear interaction between a wave and a medium. 
Then the following effects were experimentally 
discovered: SRS and SF,5,6 BweakerB effects of 
parametric generation of higher harmonics (coherent 
anti-Stokes scattering and coherent wave mixing),7 and 
then even SBS8 in droplets of dyed water, ethanol, and 
fuel. 

Some regularities, not typical for extended media, 
were found in manifestation of stimulated scattering 
effects in micrometer-size particles. It proved, for 
example, that the spectral shape of stimulated 
scattering signals has a characteristic BpeakedB 
structure within a spontaneous scattering contour,6 the 
SRS signal lags behind the pump pulse,9,10 and the 
energy threshold of all the above mentioned effects are 
lower than those in continuous medium.11 

The main prerequisite of the nonlinear optical 
effects in micrometer-size particles, as noted above, is 
the possibility of exciting of the optical field in such 
particles. The characteristics of these resonances are 
considered in detail, for example, in Ref. 12. Here we 

would like only to emphasize that they are observed at 
certain values of the diffraction parameter of a particle 
and theoretically can be rather narrow with the Q-
factor Q ∼ 1010 $ 1020. In practice, the values of Q are, 
as a rule, below 106 $ 108 (Ref. 11). This is connected, 
first, with the radiation absorption in a liquid and, 
second, with the non-spherical shape of particles 
because of different physical processes. The capability 
of transparent particles to focus the light field inside 
their volume also plays a significant part in appearance 
of stimulated scattering effects. Two main maxima of 
the electromagnetic field formed near the shadow and 
illuminated surfaces of a particle are powerful sources 
of spontaneous Raman scattering. 

The above-mentioned peculiarities of the spatial 
configuration of the pump and stimulated scattering 
fields in spherical particles result in the appearance of a 
time lag between the stimulated scattering signal from 
particles and the pump pulse.9,10,13 Within the 
framework of the existing theoretical model of 
stimulated scattering process in a transparent particle 
(see Section 1), the time lag Δt follows from the 
finiteness of the time of formation of the stimulated 
scattering signal. In other words, similarly to 
generation of stimulated radiation in a laser cavity, 
light wave must travel several times from mirror to 
mirror (in a micrometer-size particle, along the surface 
which plays the part of a mirror) to form sufficiently 
intense radiation at the Raman frequency, which is 
capable to support the stimulated process. Typical 
values of the time lag Δt in experiments with the 
micrometer-size droplets are within the range 
1 ≤ Δt ≤ 10 ns (Ref. 13) and are practically 
independent of the particle size. This indicates that 
resonance modes with the same (by the order of 
magnitude) Q-factor Q ∼ 105 $ 106 play the main part 
in the formation of stimulated scattering signals. 

The threshold characteristics of the processes of 
stimulated scattering, in contrast to the frequency and 
time characteristics, have received poorer experimental 
study. As was noted above, the resonance character of 
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excitation of stimulated scattering in micrometer-size 
particles leads to a significantly lower threshold of its 
manifestation. Moreover, if certain restrictions are 
imposed on the geometry and time conditions of 
pumping, anomalously low thresholds of stimulated 
scattering can be obtained.14,15 

Note that all the above-listed processes occur 
inside particles. From this viewpoint, they can be 
called the processes of volume scattering. The only 
exception is for the phenomenon connected with Raman 
scattering of light waves at the surface of a liquid 
particle, vibrations of which were first excited by high-
power laser radiation (this effect was considered in 
Refs. 16 and 17). As known, such vibrations are caused 
by ponderomotive forces of light field.18,19 The 
amplitude of these forces in transparent optically large 
particles can be high enough to cause not only 
significant deformations, but also destruction of 
particles.20 

As was noted above, the effects of stimulated 
scattering in transparent particles have some 
peculiarities in comparison with those in continuous 
medium. The existence of these effects in the disperse 
media is connected with the possibility of exciting the 
resonance vibrational modes of the electromagnetic field 
in particles, what results, first of all, in appearance of a 
resonance structure in the spectra of stimulated 
scattering in particles. The main prerequisite for 
practical application of the effects of stimulated 
scattering is quite a well-defined correspondence 
between this resonance structure and particle 
morphology. This actually indicates that the spectral 
position of resonance peaks in the spectra of stimulated 
scattering is unambiguously determined by the particle 
shape, its diffraction parameter xa = 2πa0/λ (a0 is the 
particle radius; λ is the radiation wavelength), and the 
refractive index. Therefore, any changes in the spectral 
position of resonances at unchanged chemical 
composition of a particle unambiguously correspond to 
changes in the above-listed parameters. This idea 
provides the basis for the techniques of contactless 
diagnostics of microphysical parameters of aerosol 
particles.21,22 

The lower, as compared to the continuous 
medium, energy threshold of stimulated scattering 
processes in particles and narrow spectral width of the 
Raman scattering line (∼0.01 cm$1) also open new 
fields for the practical use of these effects in the Raman 
spectroscopy of aerosols.22$24 In contrast to traditional 
spectroscopic methods of determination of the spectral 
composition from Raman spectra of samples, Raman 
spectroscopy, being essentially a sort of intracavity 
spectroscopy, does not impose restrictions on the 
minimum size of the medium under study. So, it allows 
in situ diagnostics of aerosol formations to be 
performed. Transparent particles act as high-Q optical 
cavities, amplifying the wave of spontaneous Raman 
scattering by many times and providing the positive 
feedback for appearance of stimulated radiation. High 
values of the coefficient of nonlinear conversion of the 
incident wave into the Raman component significantly 

increase the sensitivity of micro-Raman spectroscopy, 
thus allowing detection of even minor admixtures 
(< 10%) in the basic substance.22 Moreover, this 
threshold can be even further decreased by an order of 
magnitude, if a small amount of a lasing dye is added 
to the particle under study.24 The dye, due to its active 
fluorescence, provides faster growth of the Raman 
scattering signal. 

And, finally, one more field of practical 
application of the effects of stimulated scattering in 
micrometer-size particles is associated with the optical 
technologies, rather than physical optics. Resonance 
properties of micrometer-size particles open up fresh 
opportunities for designing high-efficiency laser sources 
capable of operating not only in the optical range, but 
also in the SHF region.25 From the literature it is also 
known that microcavities were actually applied as high-
Q frequency filters in optical communication devices.26 

In this paper we present a theoretical description 
of the main characteristics of nonlinear effects of 
stimulated scattering in weakly absorbing particles. In 
this study we have mainly focused on a spatial 
structure of the light field inside a spherical particle 
under conditions of their resonance excitation. The 
degree of interaction of these vibrational modes is the 
factor which determines the efficiency of excitation of 
nonlinear scattering processes in a particle. 

 

1. Theoretical model of the processes of 
stimulated scattering in spherical 

particles 
 

Let us consider the main points of the theoretical 
description of stimulated scattering in transparent 
particles. Qualitatively, the appearance of stimulated 
scattering in a spherical particle can be described as 
follows.10,16 

At nonlinear interaction of radiation with the 
substance of a transparent particle, spontaneous 
inelastic scattering occurs in the whole particle volume, 
and it is most intense in the areas of focusing of the 
optical (pump) field. Raman frequencies in the 
scattered signal may appear due to interaction of the 
incident wave with the molecular vibrations of the 
medium (SRS), scattering on the acoustic phonons 
resulting from the electrostriction effect (SBS), 
emission of fluorescing molecules (SF), as well as 
scattering on thermal fluctuations of the medium 
density (STS). Some waves of the Raman spectrum 
leave the droplet, while others propagate along its 
surface because of the total internal reflection (more 
precisely, almost total internal reflection) (see Fig. 1). 
In traveling, these waves attenuate due to absorption 
and escape through the droplet surface, but they also 
can be intensified due to medium nonlinearity. If the 
resonance condition is fulfilled for one or several 
frequencies of the Raman spectrum, that is, the wave 
frequency ωs coincides with the frequency of some 
natural resonance mode ωn of a droplet, the 
amplification of spontaneous wave may exceed the total 
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loss, and thus the stimulated Raman scattering occurs 
in the particle. From the viewpoint of field formation 
in a cavity, the field of stimulated scattering can be 
treated as a standing wave formed by superposition of 
electromagnetic waves propagating towards each other 
along the spherical surface of a droplet as the condition 
of phase matching is fulfilled. 

Focusing 

areas

Spontaneous

scattering

Stimulated

scattering

Incident

radiation

 
 

Fig. 1. Evolution of the stimulated scattering process in a 
spherical particle. Shaded areas show the main sources of 
spontaneous Raman scattering, which is then intensified by the 
field of the particle resonance mode (ring zone near the 
surface). 

 
Analysis shows that, in spite of different physical 

nature of the phenomena resulting in the occurrence of 
that or another process of stimulated scattering (SRS, 
SBS, or SF), they are described similarly.16 This is 
explained, first of all, by the fact that all the 
considered nonlinear optical effects are essentially 
resonance processes in the sense that their occurrence in 
a particle is connected with its resonance properties. 
Therefore, the threshold, angular, and spectral 
characteristics of all the types of stimulated scattering in 
the particle are BfingerprintsB of the resonance structure 
of internal fields. 

The initial equations for theoretical analysis of the 
processes of nonlinear light scattering in a particle are 
the Maxwell equations, in which the nonlinear medium 
polarization PN(r, t) induced by the pump field serves 
as a source of the Raman scattering wave field.27 As 
known, upon excluding the magnetic field strength 
H(r, t), this set of equations transforms into the wave 
equation for the electric field strength vector E(r, t) in 
the particle: 

 rot rot E(r, t) + 
εa
c2 

∂2E(r, t)
∂t2   + 

 +  
4πσ
c2  

∂E(r, t)
∂t   =  $ 

4π
c2  

∂2

∂t2 PN(r, t), (1) 

where c is the speed of light in vacuum; εa and σ are, 
respectively, the permittivity and conductivity of the 
particulate matter; the medium is considered 
homogeneous. At the boundary of spherical region, the 
conditions of continuity of the tangent field 
components: 

 (Ei(r, t) + Esc(r, t) $ E(r, t)) × nr = 

 = (Hi(r, t) + Hsc(r, t) $ H(r, t)) × nr = 0 (2) 

are fulfilled. Here nr is the outer normal to the particle 
surface, and subscripts œiB and œscB correspond 

respectively to the incident and scattered waves outside 
of the particle. 

The electric field E(r, t) in a particle is the sum 
of fields at the frequency of the incident wave ωL 
(pump frequency) and at the Raman shifted 
frequencies. From here we restrict our consideration to 
only the first Stokes wave with the frequency 
ωs = ωL $ ωvib (ωvib is the frequency of the dipole 
transition of the particulate matter) because it is most 
intense. Thus, E(r, t) = EL(r, t) + Es(r, t), where the 
time dependence of the vector E can be presented by a 

harmonic e$iωt with a slowly varying amplitude  

E
∼
(r, t): 

E(r, t) = 
1
2
 E
∼

L(r, t) e$iωLt  

+ 
1
2
 E
∼

s(r, t) e
$iωst + complex conjugate. 

In this case the wave equation (1), in fact, breaks into 
two related equations: for the incident and scattered 
waves, and nonlinear polarization Pnel in the 
approximation of an only slightly nonlinear process also 
breaks into two terms: 

 Pnel = Ps + PL = χ(3)(ωs) (E
∼

L E
∼

L
*) E

∼
s e

$iωst + 

 + χ(3)(ωL) (E
∼

s E
∼

s
*) E

∼
L e$iωLt + complex conjugate, 

where χ(3) is the third-order nonlinear dielectric 
susceptibility. The Eq. (1) for field is supplemented 
with the equations describing specific physical 
mechanism of occurrence of a nonlinearly scattered 
wave.16 

Because we consider the formation of fields in a 
volume optical cavity (spherical particle in our case), 
our next step is to present the solution of the wave 
equation (1) for the fields En(r) and Hn(r) as a series 
expansion over eigenfunctions (normal vibrational 
modes) of the particle with the natural frequencies ωn, 
which are complex for open cavities.28 These functions 
form the complete orthogonal system within the 
framework of the electrodynamics problem (1) for the 
closed cavity without radiative loss and satisfy the 
equations: 

rot En(r) = i 
ωn

c
 Hn(r);  rot Hn(r) = $ i 

εa ωn

c
 En(r). (3) 

Then, for example, for the Stokes wave field we have 

 Es(r, t) = ∑
n

 An(t, ωs) En(r), 

 Hs(r, t) = $i εa ∑
n

 Bn(t, ωs) Hn(r), (4) 

where the time dependence is taken into account 
through the coefficients An and Bn and, besides, their 
frequency dependence is shown explicitly. The subscript 
n, in the general case, is used for a set of several 
subscripts, the number of which depends on the specific 
geometry of the cavity. For a sphere, for example, there 
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are three subscripts: the mode number n, the azimuth 
number l, and the resonance order j. 

Note that the above-described mathematical 
approach that uses a series expansion of fields in an 
open cavity over the eigenfunctions of a closed cavity 
and taking into account actual boundary conditions at 
its surface is known in the literature as the Slater 
method.29 However, one should keep in mind that the 
expansions (4) do not converge to actual values at 
r = a0 because the tangential components of the 
eigenfunctions of the ideal cavity En(r) and Hn(r) 
equal zero at the surface. Therefore, the use of the 
expansion of the actual fields E and H under the rot 
sign is incorrect, from the general point of view. We 
should write the expansion of the functions (rot E) and 
(rot H) over the systems En(r) and Hn(r). Using 
Eqs. (3) and (4), we have 

 ⌡⌠
V

 
 
rot E(r′) H*

n(r′) dr′ = $ i 
εa ωn

c
 An(t) + 

 + ⌡⌠
S

 
 
[E(r′) × H*

n(r′)] nr dr′ = $ 
ωn

c
 
dBn(t)

dt
 . 

The expansion for (rot H) has quite similar form. 
After some transformations typical for the theory of 

resonators, we derive the set of equations for the 
expansion coefficients An(t): 

 
d2An(t)

dt2
  +  

4πσ
εa

 
dAn(t)

dt
  +  ω2

n An(t) = 

 = $ 
4π
εa

 ⌡⌠
V

 
 E

*
n(r′) 

∂2Ps(r′, t)
∂t2  dr′ $ 

iωnc

εa
 Πn(t), (5) 

where 

 Πn(t) = ⌡⌠
S

 
 
[E(r′) × H*

n(r′)] nr dS $ 

 $ 
i

ωn
 
∂
∂t ⌡⌠

S

 
 
[H(r′) × E*

n(r′)] nr dS. 

Let us analyze this equation. As seen, it 
describes the fading stimulated oscillations. These 
oscillations are excited by an external force acting at  
the frequency ωs and proportional to the medium 
polarization induced by the pump field. The surface 
integral Πn(t) in the right-hand side of Eq. (5) takes 
into account the energy loss of the Stokes wave due 
to nonlinear relation of the natural modes through 
the particle surface. For the spherical cavity it can be 
transformed as 

 Πn(t) = 2An(t) 
ωn εa
c Q

rad
n

 
⎣
⎡

⎦
⎤1 + 

i

2Qrad
n

 . 

Here the parameter of radiative Q-factor of the cavity 

Q
rad
n  = ωn Wn/Prad is introduced, where 

 Wn = 
εa
8π ⌡⌠

V

 
 
En(r′) E*

n(r′) dr′ 

is the mean energy of the electromagnetic field 
accumulated in a natural mode during  the oscillation 
period, and 

 Prad = 
c

8π ⌡⌠
S

 
 
Re{[En(r′) × H*

n(r′)]} nr dS  

is the mean power of the radiative loss of the light 
wave. Finally, equation for the expansion coefficients 
of the field E(r, t) in a particle takes the form 

 
d2 An(t)

dt2
 + 

ωn

Q
abs
n

 
dAn(t)

dt
 + 
⎣
⎡

⎦
⎤ωn ⎝

⎛
⎠
⎞1 + 

i

2Qrad
n

 
2

 An(t) = 

 = $ 
4π
εa

 ⌡⌠
V

 
 
E*

n(r′) 
∂2Ps(r′,t)

∂t2  dr′. (6) 

The parameter Q
abs
n  in the left-hand side of this 

equation is essentially the cavity Q-factor as well (at 
the natural mode frequency ωn), but in contrast to the 

radiative Q-factor Q
rad
n , it is caused only by the 

absorption of light wave by the particulate matter: 

 Q
abs
n   =  

ωn Wn

Pabs
 = 

ωn c2

4πσ  . 

Here Pabs = 
1
2
 ⌡⌠
V

 
 
σ(r′) En(r′) E*

n(r′) dr′ is the mean power 

of the light wave lost due to the absorption. The 

parameter Qabs
n  is a characteristic of the cavities of any 

type, but the definition of the radiative Q-factor Q
rad
n  

makes sense only for open systems with diffraction losses. 

The value of the Q-factor Qrad
n  for transparent spherical 

particles can be very large12 (see Fig. 2). 
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Fig. 2. Radiative Q-factor Q
rad

n  (dashed line) and total Q-
factor Qn (solid line) of resonance modes of a spherical 
particle vs. the mode number n for different orders j (figures 
at the curves). The absorption coefficient of the particulate 
matter chosen is of the order of κa = 10$8. 
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The frequencies of natural oscillations in the open 
cavity are complex values, rather than real ones as in 

ideal closed systems, ω′n = ωn [1 + i/(2Qrad
n )] = 

ωn + iω′′n. The degree of this non-ideality is taken into 
account by the parameter inversely proportional to the 
radiative Q-factor: 

 
1

Q
rad
n

 = 
2ω′′n
ωn

 . 

This reasoning allows us to define the total 
(effective) Q-factor Qn as 

 1/Qn = 1/Q
abs
n  + 1/Q

rad
n . (7) 

It is proportional to time characteristic of the existence 
of electromagnetic field of a natural mode in the cavity 
τn. Obviously, the allowance for absorption in a 
dielectric results in a restricted exponential growth of 
the Q-factor of the particle as its size grows. This is 
well seen in Fig. 2, which shows the dependence of the 
total Q-factor Qn of different resonance modes on the 
modal index n. The absorption coefficient of the 
particulate matter was chosen to be at the level of 
κa = 10$8. 

Studies of electromagnetic oscillations in optical 
cavities with loss often manipulate with the equation 
for the expansion coefficients of electromagnetic field in 
the following form27,30: 

 
d2 An(t)

dt2
 + 2γe 

dAn(t)

dt
 + ω

2
n An(t) = 

 = $ 
4π
εa

 ⌡⌠
V

 
 
E*

n(r′) 
∂2 Ps(r′,t)

∂t2  dr′, (8) 

where the vibration damping coefficient equals 

γe = 
ωn

2Qabs
n

 and determines the half-width of the 

resonance contour of the corresponding natural mode 
with allowance for the wave loss due to absorption. 
Note that the structure of a solution to this equation is 
similar to that of the Eq. (6) solution, if the loss for 
emission, which is typical of open cavities, is taken into 

account in the coefficient γe, and the parameter (1/Q
rad
n

) is considered small in the case when the terms of the 

order of (1/Q
rad
n )2 are negligible. 

It is clear that the symmetry of the initial 
equation (1) about the field vectors allows us to write 
an equation, similar to Eq. (5), for the expansion 
coefficients of the electric field of the incident wave: 

EL(r, t) = ∑
n

 An(t, ωL) En(r). The only peculiarity of 

this equation is specific equation for the surface integrals 
Πn(t), because the boundary conditions for the pump 
wave field differ from those for the Stokes wave. They 
are given by Eq. (2), and include, in spite of the 
scattered fields, the incident wave fields. Therefore, 
denoting the combination of surface integrals as 

 $ 
iωnc

εa
 

⎣
⎢
⎡
⌡⌠
S

 
 [Ei(r′) × H*

n (r′)] nr dS  $ 

 $ 
i

ωn
 
∂
∂t 

⎦
⎥
⎤

⌡⌠
S

 
 [Hi(r′) × E*

n(r′)] nr dS  = Fi(t), 

where Fi(t) is the external force providing for the 
energy influx into the cavity, we derive the differential 
equation for the expansion coefficients of the incident 
wave (at the frequency ωL): 

 
d2An(t,ωL)

dt2
  +  

ωn

Q
abs
n

 
dAn(t,ωL)

dt
 + 
⎣
⎡

⎦
⎤ωn ⎝

⎛
⎠
⎞1 + 

i

2Qrad
n

 
2

 × 

 × An(t, ωL) = Fi(t) $ 
4π
εa

 ⌡⌠
V

 
 
E*

n(r′) 
∂2 PL(r′, t)

∂t2  dr′. (9) 

The nonlinear polarization term in the right-hand side 
of this equation is responsible for the energy outflow 
from the pump into the Stokes wave. 

Solution of the set of equations (6) and (9) along 
with the corresponding equations of nonlinear 
processes, as well as the initial and boundary 
conditions, allows a complete description to be achieved 
of the process of stimulated scattering in a particle. 

In deriving equations (6) for the expansion 
coefficients of the electromagnetic fields in a cavity, we 
did not explicitly mention the fact that the source of 
scattered wave is initially the spontaneous Raman 
scattering arising throughout the particle volume. The 
intensity of spontaneous Raman scattering is 
proportional to the square amplitude of the pump field. 
Therefore, the nonlinear polarization Ps in the right-hand 
size of Eq. (6) can actually be presented as a sum of 
two terms Pst and Psp, which correspond, respectively, 
to the induced and spontaneous mechanisms of energy 
influx to the stimulated scattering wave29: 
Ps = Pst + Psp. As to the induced part of the 
polarization Pst, it has been defined above through the 
nonlinear susceptibility of the matter and describes the 
coherent interaction of the pump field and the Stokes 
wave field. 

The specific equation for the second component Psp 
responsible for the spontaneous scattering is determined 
by the physical mechanisms of inelastic scattering in 
the medium. Thus, for example, for the phenomenon of 
Raman scattering we use the following representation: 

 Psp(r,t) = N0 

∂α
∂q q

∼
sp
* (r,t) E

∼
L(r) e$iωst + complex conjugate,   

 (10) 

where q
∼

sp
* (r, t) = Fsp(r, t) T2 (1 $ e$t/T2) is the 

amplitude of the molecular vibrations of the medium 
due to only the processes of spontaneous scattering; α is 
the polarizability of the particulate matter; N0 is the 
concentration of molecules; and Fsp(r, t) is some  
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external distributed force that induces the molecular 
vibrations. As to the latter parameter, it is usually 
assumed to be delta-correlated in time and space: 

〈Fsp(r, t) Fsp(r′, t′)〉 = F0
2 δ(t $ t′) δ(r $ r′), where the 

coefficient F0 is connected with the quantum-
mechanical  characteristics of the medium molecules. 

 

2. Energy threshold of the stimulated 
scattering in a micrometer-size particle 

 

To describe the spatial structure of external 
sources of the Raman wave in a more explicit way, let 
us transform the right-hand side of Eq. (8) with the 
help of Eq. (10). Toward this end, let us apply the 
expansion for the pump field EL(r) and the Stokes 
wave field Es(r) over the eigenfunctions of the 
spherical cavity and use the approximation of slowly 
varying amplitudes. Besides, the pump field is considered 
preset (PL ≈ 0), and the pulse of acting radiation is 

assumed long enough to assume that dA
∼

n(ωL)/dt << 

<< dA
∼

n(ωs)/dt, where A
∼

n is the slowly varying 
amplitude. Then Eq. (8) for the coefficients An(t, ωs) 
takes the form 

2(iωs $ γe) 
d

 

A
∼

n(t, ωs)

dt
 + (ωs

2
 $ ωn

2 + 2i γeωs) A
∼

n(t, ωs) = 

 = $ 
4π
εa

 χ(3)(ωs) ∑
l

 ∑
l ′

 ∑
n ′

 A
∼

l(t, ωL) A
∼

l
*(t, ωL) × 

 × ⎣
⎢
⎡

⎦
⎥
⎤

2iωs 
d

 

A
∼

n(t, ωs)

dt
 + ωs

2 A
∼

n′(t, ωs)  S4 + 

 + N0 ωL
2 

4π
εa

 
∂α
∂q F0 T2 A

∼
n(t, ωL), (11) 

where S4 = ⌡⌠
V

 
 
E*

n(r′) En′(r′) E*
l(r′) El′(r′) dr′) are the 

integral coefficients of spatial overlap of the field of 
natural modes in the cavity. The subscripts of these 
coefficients are the numbers of interacting modes. As 
follows from the equation derived, the overlap 
coefficients in the cavity are a selector of the natural 
modes, and obviously the modes, whose spatial 
structures are closest to that of the pump field, have 
the advantages in the process of Raman wave evolution. 

The differential equation (11) under these 
assumptions allows rather a simple solution. Not making 
our consideration less general, let us simplify the 
problem under consideration assuming the pump field 
and the Stokes wave field unimodal (ωs = ωn; 
ωL = ωm). This allows us to avoid summation in the 
right-hand side of Eq. (11). At BweakB pump, if the 
induced part of the nonlinear polarization is negligible, 
the solution of Eq. (11) describes the process of 
 

spontaneous Raman scattering. The wave amplitude of 
spontaneous Raman scattering is 

 A
∼

n(t, ωs) ≈ 
4π
εa

 
∂α
∂q 

N0 ωL
2
 F0 T2

2(iωs $ γe)
 exp ($ γet) × 

 × ⌡⌠
0

t

 
 
exp (γet′) A

∼
n(t′, ωL) dt′. (12) 

(For brevity, the modal indices in the integral 
interaction coefficients are omitted.) 

In the another asymptotic case of a BstrongB pump 
field, the dominating mechanism in the scattering 
process is the energy outflow from the pump into the 
scattered wave induced by the Raman wave itself, what 
results in the nonlinear growth of its amplitude: 

 A
∼

n(t, ωs) ≈ 
∂α
∂q 

4εa N0 ωL
2 F0 T2

c2ωs gs A
∼
*
m(t, ωL) S4

 × 

 × exp 

⎩
⎨
⎧

⎭
⎬
⎫c2 gs S4

16π  ⌡⌠
0

t

 
 ⏐A

∼
n(t′, ωL)⏐

2
 dt′  , (13) 

where gs = $ 32π2 ωs/(c2εa) Im{χ(3) (ωs)} is the 

stationary gain of the stimulated Raman scattering.31 
The threshold of transition from spontaneous 

Raman scattering to stimulated Raman scattering 
apparently corresponds to the threshold value of the 

pump wave amplitude A
∼

m(ωL), at which the solution of 
Eq. (11) at t → ∞ becomes unstable. Using the 
standard definition of the asymptotic stability of the 
solution of an ordinary differential equation,32 we 
obtain the condition of SRS generation in the cavity: 

 ⏐A
∼

m(ωL)⏐
2
 > 8πωs/(c2 gs Qn S4). (14) 

Here we should emphasize two circumstances. First, the 
Eq. (14) has been derived in the approximation of a 
preset pump field, that is, the SRS threshold is 
obviously underestimated. The allowance for exhaustion 
of the pump wave, as well as the energy outflow from 
the Stokes wave to higher harmonics leads to an 

increase of the threshold value A
∼

m(ωL). Second, the 
coefficients in Eq. (14) correspond to the expansion of 
the pump field inside the particle, and, as follows from 
the Mie theory, it can be tens or even hundreds times 
stronger than the field of the incident wave. Therefore, 
if we define the threshold of stimulated scattering in 
the particle as some threshold intensity Ist(ωL) of the 
exciting light wave before its incidence on the particle 
at which generation of the stimulated radiation occurs, 
then, separating the amplitude part in Eq. (14), we have 

 Ist(ωL) = 
na ωs

cgsQn⏐bm(xa)⏐
2
S4

 , (15) 
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where the coefficient bm(xa) takes into account the 
degree of modification of the incident wave field by the 
particle morphology. 

 

3. Coefficient of spatial overlap of light 
fields in a spherical particle 

 

The equation for the threshold pump intensity 
resulting in transition from spontaneous scattering to 
stimulated one has been derived above (Eq. (15)). 
Similar result can also be obtained within the 
framework of a different approach based on the law of 
conservation of the electromagnetic energy in the 
particle irradiated.16 In the above designations this law 
for the vectors of the electromagnetic field of scattered 
wave can be written as 

 
dWs

dt
 = Pg $ (Pabs + Prad), (16) 

where Pg = $ 
1
2
 ⌡⌠

V

 
 Re {E

∼
s
* (∂P

∼
s/∂t)} dr′ is the average 

power of the sources of the Stokes wave. 

From the condition  that 
dWs

dt
 = 0 we can obtain 

the equation for the threshold pump intensity ensuring 
the stimulated scattering in a transparent particle to 
occur: 

 It(ωL) = 
na ωs

gs Q(ωs) B“(ωL, ωs)
 , (17) 

where Q(ωs) is the total Q-factor of the particle at the 
frequency ωs, and B“(ωL, ωs) is the integral coefficient 
allowing for the spatial overlap of the interacting fields 
inside the particle: 

 Bc(ωL, ωs) = 

⎝
⎜
⎛

⎠
⎟
⎞

⌡⌠
V

 
 Bs(r) dr′

$1

 ⌡⌠
V

 
 
Bs(r) BL(r) dr′. (18) 

In Eq. (18) BL(r) and Bs(r) are the inner field 
inhomogeneities, known from the Mie theory, at the 
frequencies ωL and ωs, respectively (see Ref. 33). If the 

fields E
∼

L and E
∼

s are unimodal, then 

 Bs(r) = ⏐bn(xa)⏐
2
[En(r) E*

n(r)],  

 BL(r) = ⏐bm(xa)⏐
2
[Em(r) E*

m(r)]. 

The field overlap coefficient Bc(ωL, ωs) in this case 
takes the following form: 

 Bc(ωL, ωs) = ⏐bm(xa)⏐
2
S4, 

and Eq. (17) for the SRS threshold transforms into 
Eq. (15). 

The threshold values of It for the SRS and SBS 
processes in water droplets at the varied droplet radius 
are given in Refs. 16 and 34. In Ref. 34 we also studied 
the behavior of the overlap coefficient Bc for different 

cases of stimulated scattering in spherical particles. 
Figure 3 shows the dependence of the coefficient Bc on 
the resonance half-width c = xa/Q at the frequency of 
a scattered wave for three processes: SRS, SRS at 
BdoubleB resonance of optical fields (pump wave and 
Stokes wave), and SBS. The data shown in the figure 
were obtained from the numerical calculations of the 
coefficient Bc for different configurations of the spatial 
overlap of resonance modes in water droplets. Every 
group of data is unified by a spline for illustration. 

It is the difference in the behaviors of Bc(c) at 
SRS and SBS that attracts our attention first of all. If 
in the first case this dependence is monotonic, then the 
dependence Bc(c) for SBS has a pronounced maximum 
associated with the violation of the resonance 
conditions for the pump field. Thus, to the right from 
the maximum of the Bc(c) curve for SBS, the 
stimulated process runs at the resonance of both the 
interacting fields of the pump and scattered waves, and 
to the left from the maximum, the resonance is 
observed only for the Stokes wave. 
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Fig. 3. Field overlap coefficient Bc vs. the halfwidth of 
resonance modes of a spherical particle c at SRS (1), BdoubleB 
resonance SRS (2), and SBS (3). The radiative Q-factor of the 

resonance modes Qn

rad
 is plotted on the upper scale. 

 
There is also a difference between the values of 

the overlap coefficient for the single- and double-
resonance SRS. At resonance pumping of SRS in the 
particle, the values of Bc are significantly higher and 
tend to growth with decreasing half-width of the 
resonance modes due to the increase in their Q-factor. 
At non-resonance pumping the dependence is quite 
opposite. In this case a decrease in the Bc coefficient is 
connected with narrowing of the resonance maximum of 
the spatial distribution of the scattered wave field at its 
simultaneous shift along the radius toward the particle 
surface, where the pump field has a local  
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minimum. In the limit of very narrow resonances 
(c ≤ 10$7), the spatial configuration of the pump field 
in the spherical particle, which is taken into account 
through the coefficient Bc, has no effect on the process 
of stimulated scattering, and the values of Bc are close 
to unity, as in the case of an extended medium. 

With all the above mentioned differences, the 
dependences Bc(c) shown in the figure have a common 
property, namely, at large c they all converge to the 
same level Bc ≈ 4.5. In this interval of BwideB natural 
modes, their resonance nature becomes practically 
implicit, and the excess of the overlap coefficient over 
unity is caused only by focusing of the incident field 
because of a spherical surface of the particle. 

 

4. Influence of surface deformations of 
spherical particles on the Q-factor of 

their natural modes 
 

As follows from the above-said, the effective Q-
factor Q is an  important characteristic affecting 
processes of nonlinear interaction of light fields in 
optical cavities. The value of the Q-factor itself 
significantly depends on the geometry of a microcavity, 
in spite of the dependence on optical characteristics of the 
particulate matter. As to spherical particles, any 
deformations of their surface finally result in worsening 
of their resonance properties. One of the reasons is that 
electromagnetic waves forming the field of a resonance 
mode interact with distortions of the spherical surface 
and scatter on them thus causing additional emission 
from the cavity. However, it should be noted that such 
an approach gives somewhat overestimated values of 
the Q-factor as compared to the experimental ones and 
does not explain some facts observed in the experiment 
(for example, effect of splitting of natural modes over 
the azimuth index l in spheres,35 selection of low-Q 
modes in deformed particles36). 

Another one and more likely, in our opinion, cause 
for the decrease in Q-factor is violation of the 
conditions of phase matching for resonances of optical 
modes in deformed particles. This changes the spatial 
structure of natural oscillations and shifts the frequency 
position of resonances. Below this effect is considered 
in a more detail. 

To estimate the effect of surface deformations on 
the Q-factor of resonance modes, we proceed from the 
model of formation of stimulated scattering in a 
particle. The resonance mode is treated as a standing 
wave formed by superposition of two waves 
propagating toward each other along the boundary of 
the principal cross section of a spherical particle 
(Fig. 4). The plane of this cross section passes through 
the center of the sphere and is inclined at an angle θnl 
to the z axis. This angle is determined by the ratio of 
the azimuth subscript of the resonance mode l to its 
number n: θnl = arccos(l/n). Since the subscript l 
varies in the interval (n; $n), the plane of the circle, 

within which the mode field is mostly localized, lies at 
the polar angle θ = 0 $ π/2. 

To form the standing wave, traveling waves must 
come at the initial point with the phase multiple of 2π, 
that is, the condition of the phase matching must be 
fulfilled: k=0 = n, where k is the wave number inside 
the particle. Consequently, to preserve the phase 
matching, any deformations of the spherical surface 
changing the path length of the traveling waves by δL 
must be compensated for by the corresponding change 
of the absolute value of the wave vector δk: 
δL/L0 = δk/k, where L0 = 2π=0 is the geometrical 
path length in an ideal sphere. 

 

 

Fig. 4. Scheme illustrating the distribution of the field of a 
resonance mode with the azimuth subscript l. The 
electromagnetic field is localized in the ring zone inclined at 
the angle θnl to the equator. 

 
Assuming ξ(θ) = a(θ) $ a0, where a(θ) is the 

radius of the deformed particle (we consider 
deformations symmetrical over the spherical angle ϕ), 
we obtain for the length increment δL: 

 δL ≅ ⌡⌠
θnl

π$θnl
 
 ξ(θ)dθ ⋅ 

2π=0

π $ 2θnl
 = ξA ⌡⌠

θnm

π$θnl
 
 ξ
$
(θ)dθ ⋅ 

2π=0

π $ 2θnl
 , 

where ξA is the amplitude of surface deformations; ξ
$
 = 

= ξ(θ)/ξA. 
In the approximation of small surface 

deformations (ξA << 1), the cross section of the 
deformed particle can yet be considered as a circle with 
some effective radius =eff depending on the amplitude 
and angular structure of deformations: 

 =eff = 1/2π (L0 + δL) = =0 (1 + ξA qnl). 

Here qnl = 
1

π $ 2θnl
 ⌡⌠

θnl

π$θnl
 
  ξ

$
(θ)dθ is the conversion 

coefficient (obviously, ⏐qnl⏐ ≤ 1). Then for the 
increment of the diffraction parameter of the effective 
sphere δx for the TE(TH)nl-mode we have 

 δx = xeff $ x0 = δk/na a0 = x0 ξA qnl, (19) 
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where x0 is the resonance value of the diffraction 
parameter of the unperturbed sphere; xeff = k0 =eff. 

As an example, Fig. 5 shows the dependence of 
the coefficients qnl on the ratio (l/n) at deformation of 
liquid droplets under exposure to wave train of 
picosecond laser pulses (the data on deformations have 
been borrowed from Ref. 36). One can see that qnl 
varies from 10$3 to 10$2 and approaches maximum for 
the modes lying in the plane of the droplet equator 
(l = n). 
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Fig. 5. Conversion coefficients qnl vs. the ratio (l/n) for the 
droplets of water (1) and CS2 (2). 

 
As calculations show, the shape of the resonance 

curve of the particle natural modes corresponds to the 
Lorentz profile, therefore in the close vicinity of some 
resonance we can introduce the so-called Q-function: 

 Qq(x) = 
Q0

1 + (x $ x0)2/Γ2 , 

where Q0 is the Q-factor of some resonance mode of an 
unperturbed sphere (modal subscripts are omitted for 
simplicity) with the resonance curve half-width Γ. The 
value of this function at x = x0 apparently coincides 
with the resonance Q-factor. Using Eq. (19) and taking 
into account that Q0 = x0/Γ, we obtain 

 Qq(x) = 
Q0

1 + (qnl ξA Q0)2 . 

As follows from this equation, the higher is the 
initial Q-factor of the resonance mode (higher Q0 
values), the stronger is the effect of deformations on it. 
In this case the modes with lower Q-factor, but more 
stable to particle deformations has an advantage in the 
development, because the electromagnetic field of these 
modes is concentrated farther from the surface.12 

 

Conclusion 
 

Let us formulate briefly the main results of this 
work. The theoretical consideration of the basic effects 
of stimulated scattering (SRS, SBS) in transparent 
spherical particles has shown that the main parameters 

determining the character of manifestation of different 
nonlinear wave processes are the effective Q-factor Q 
and the coefficient Bc of spatial overlap of the optical 
fields of interacting modes. The set of equations was 
derived for the amplitude coefficients of the fields of 
the Stokes and incident waves. The approximated 
solutions were obtained for two asymptotic cases of 
spontaneous Raman scattering and developed SRS, and 
the threshold of transition between these two cases was 
found. The numerical estimates showed the influence of 
the spatial structure of the interacting natural 
oscillation modes of a particle on the value of this 
threshold. It was found that the coefficient of overlap 
of the optical fields of the pump radiation and 
stimulated scattering inside the particle depends on 
how close are their spatial profiles. The value of Bc was 
shown to increase markedly if the frequency shift 
between the pump wave and the wave of stimulated 
scattering is less than the natural resonance line half-
width of a particle (SBS), or the pump is also under 
resonance conditions (BdoubleB resonance SRS). 

Significant influence of the shape deformations on 
the resonance properties of spherical particles was 
established. The analytical equation was derived for the 
change in the Q-factor of natural resonance modes at 
small deviations of the particle shape from sphere. It 
was shown that the higher the Q-factor of the 
resonance modes, the stronger the effect of surface 
deformations on it. 
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